Suppr超能文献

鉴定艰难梭菌对抗菌肽耐药的遗传基因座。

Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile.

机构信息

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.

出版信息

Infect Immun. 2011 Jan;79(1):167-76. doi: 10.1128/IAI.00731-10. Epub 2010 Oct 25.

Abstract

Clostridium difficile causes chronic intestinal disease, yet little is understood about how the bacterium interacts with and survives in the host. To colonize the intestine and cause persistent disease, the bacterium must circumvent killing by host innate immune factors, such as cationic antimicrobial peptides (CAMPs). In this study, we investigated the effect of model CAMPs on growth and found that C. difficile is not only sensitive to these compounds but also responds to low levels of CAMPs by expressing genes that lead to CAMP resistance. By plating the bacterium on medium containing the CAMP nisin, we isolated a mutant capable of growing in three times the inhibitory concentration of CAMPs. This mutant also showed increased resistance to the CAMPs gallidermin and polymyxin B, demonstrating tolerance to different types of antimicrobial peptides. We identified the mutated gene responsible for the resistance phenotype as CD1352. This gene encodes a putative orphan histidine kinase that lies adjacent to a predicted ABC transporter operon (CD1349 to CD1351). Transcriptional analysis of the ABC transporter genes revealed that this operon was upregulated in the presence of nisin in wild-type cells and was more highly expressed in the CD1352 mutant. The insertional disruption of the CD1349 gene resulted in significant decreases in resistance to the CAMPs nisin and gallidermin but not polymyxin B. Because of their role in cationic antimicrobial peptide resistance, we propose the designation cprABC for genes CD1349 to CD1351 and cprK for the CD1352 gene. These results provide the first evidence of a C. difficile gene associated with antimicrobial peptide resistance.

摘要

艰难梭菌会导致慢性肠道疾病,但人们对其在宿主中如何相互作用和存活知之甚少。为了在肠道中定植并导致持续性疾病,该细菌必须规避宿主先天免疫因子(如阳离子抗菌肽(CAMPs)的杀伤作用。在这项研究中,我们研究了模型 CAMPs 对生长的影响,发现艰难梭菌不仅对这些化合物敏感,而且还会通过表达导致 CAMP 耐药的基因来对低水平的 CAMPs 做出反应。通过将细菌接种在含有 CAMP 乳链菌肽的培养基上,我们分离出一种能够在 CAMPs 抑制浓度的三倍下生长的突变体。该突变体对 CAMPs 短杆菌肽和多粘菌素 B 的抗性也有所增加,表现出对不同类型抗菌肽的耐受性。我们确定了导致耐药表型的突变基因是 CD1352。该基因编码一个假定的孤儿组氨酸激酶,位于预测的 ABC 转运子操纵子(CD1349 到 CD1351)旁边。对 ABC 转运子基因的转录分析显示,该操纵子在野生型细胞中存在乳链菌肽时被上调,并且在 CD1352 突变体中表达更高。CD1349 基因的插入失活导致对 CAMPs 乳链菌肽和短杆菌肽的抗性显著降低,但对多粘菌素 B 的抗性没有降低。由于它们在阳离子抗菌肽耐药中的作用,我们建议将 CD1349 到 CD1351 基因命名为 cprABC,将 CD1352 基因命名为 cprK。这些结果首次提供了与抗菌肽耐药相关的艰难梭菌基因的证据。

相似文献

1
Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile.
Infect Immun. 2011 Jan;79(1):167-76. doi: 10.1128/IAI.00731-10. Epub 2010 Oct 25.
2
The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile.
Microbiology (Reading). 2011 May;157(Pt 5):1457-1465. doi: 10.1099/mic.0.045997-0. Epub 2011 Feb 17.
4
Different CprABC amino acid sequences affect nisin A susceptibility in Clostridioides difficile isolates.
PLoS One. 2023 Jan 20;18(1):e0280676. doi: 10.1371/journal.pone.0280676. eCollection 2023.
5
Examination of the Clostridioides (Clostridium) difficile VanZ ortholog, CD1240.
Anaerobe. 2018 Oct;53:108-115. doi: 10.1016/j.anaerobe.2018.06.013. Epub 2018 Jun 22.
6
Proteomic Adaptation of to Treatment with the Antimicrobial Peptide Nisin.
Cells. 2021 Feb 11;10(2):372. doi: 10.3390/cells10020372.
9
Identification of EnvC and Its Cognate Amidases as Novel Determinants of Intrinsic Resistance to Cationic Antimicrobial Peptides.
Antimicrob Agents Chemother. 2016 Mar 25;60(4):2222-31. doi: 10.1128/AAC.02699-15. Print 2016 Apr.

引用本文的文献

1
Proline Stickland fermentation supports spore maturation.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0055125. doi: 10.1128/aem.00551-25. Epub 2025 Jun 4.
3
A metabolite dehydrogenase pathway represses sporulation of Clostridioides difficile.
Anaerobe. 2025 Jun;93:102971. doi: 10.1016/j.anaerobe.2025.102971. Epub 2025 May 9.
4
Antimicrobial peptide-based strategies to overcome antimicrobial resistance.
Arch Microbiol. 2024 Sep 23;206(10):411. doi: 10.1007/s00203-024-04133-x.
7
The pH-responsive SmrR-SmrT system modulates antimicrobial resistance, spore formation, and toxin production.
Infect Immun. 2024 Mar 12;92(3):e0046123. doi: 10.1128/iai.00461-23. Epub 2024 Feb 12.
8
The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system.
PLoS Genet. 2023 Oct 16;19(10):e1010841. doi: 10.1371/journal.pgen.1010841. eCollection 2023 Oct.
9
Glycine fermentation by promotes virulence and spore formation, and is induced by host cathelicidin.
Infect Immun. 2023 Oct 17;91(10):e0031923. doi: 10.1128/iai.00319-23. Epub 2023 Sep 27.
10
Expanding our grasp of two-component signaling in .
J Bacteriol. 2023 Oct 26;205(10):e0018823. doi: 10.1128/jb.00188-23. Epub 2023 Sep 20.

本文引用的文献

1
Integration of metabolism and virulence by Clostridium difficile CodY.
J Bacteriol. 2010 Oct;192(20):5350-62. doi: 10.1128/JB.00341-10. Epub 2010 Aug 13.
2
Economic healthcare costs of Clostridium difficile infection: a systematic review.
J Hosp Infect. 2010 Apr;74(4):309-18. doi: 10.1016/j.jhin.2009.10.016. Epub 2010 Feb 12.
3
Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.
PLoS Pathog. 2009 Oct;5(10):e1000626. doi: 10.1371/journal.ppat.1000626. Epub 2009 Oct 16.
4
Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile.
J Biol Chem. 2009 Dec 11;284(50):34666-73. doi: 10.1074/jbc.M109.051177. Epub 2009 Oct 6.
6
Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147.
Mol Microbiol. 2009 Feb;71(4):1043-54. doi: 10.1111/j.1365-2958.2008.06590.x. Epub 2009 Jan 16.
7
Applications of next-generation sequencing technologies in functional genomics.
Genomics. 2008 Nov;92(5):255-64. doi: 10.1016/j.ygeno.2008.07.001. Epub 2008 Aug 24.
8
Analyzing real-time PCR data by the comparative C(T) method.
Nat Protoc. 2008;3(6):1101-8. doi: 10.1038/nprot.2008.73.
9
Clostridium difficile and inflammatory bowel disease.
Inflamm Bowel Dis. 2008 Oct;14(10):1432-42. doi: 10.1002/ibd.20500.
10
Inducible resistance of fish bacterial pathogens to the antimicrobial peptide cecropin B.
Antimicrob Agents Chemother. 2008 Sep;52(9):3006-12. doi: 10.1128/AAC.00023-08. Epub 2008 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验