Suppr超能文献

通过 发酵甘氨酸可促进毒力和孢子形成,并受宿主防御素诱导。

Glycine fermentation by promotes virulence and spore formation, and is induced by host cathelicidin.

机构信息

Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center , Atlanta, Georgia, USA.

出版信息

Infect Immun. 2023 Oct 17;91(10):e0031923. doi: 10.1128/iai.00319-23. Epub 2023 Sep 27.

Abstract

is a leading cause of antibiotic-associated diarrheal disease. colonization, growth, and toxin production in the intestine is strongly associated with its ability to use amino acids to generate energy, but little is known about the impact of specific amino acids on pathogenesis. The amino acid glycine is enriched in the dysbiotic gut and is suspected to contribute to infection. We hypothesized that the use of glycine as an energy source contributes to colonization of the intestine and pathogenesis of . To test this hypothesis, we deleted the glycine reductase (GR) genes , rendering unable to ferment glycine, and investigated the impact on growth and pathogenesis. Our data show that the pathway promotes growth, toxin production, and sporulation. Glycine fermentation also had a significant impact on toxin production and pathogenesis of in the hamster model of disease. Furthermore, we determined that the locus is regulated by host cathelicidin (LL-37) and the cathelicidin-responsive regulator, ClnR, indicating that the host peptide signals to control glycine catabolism. The induction of glycine fermentation by LL-37 demonstrates a direct link between the host immune response and the bacterial reactions of toxin production and spore formation.

摘要

是抗生素相关性腹泻病的主要病因。在肠道中定植、生长和产生毒素与它利用氨基酸产生能量的能力密切相关,但对于特定氨基酸对发病机制的影响知之甚少。甘氨酸在肠道失调中富集,并且被怀疑与感染有关。我们假设甘氨酸作为能量来源的利用有助于肠道定植和的发病机制。为了验证这一假设,我们删除了甘氨酸还原酶(GR)基因,使无法发酵甘氨酸,并研究了其对生长和发病机制的影响。我们的数据表明,途径促进生长、毒素产生和孢子形成。甘氨酸发酵对疾病仓鼠模型中的毒素产生和发病机制也有显著影响。此外,我们确定了 位点受宿主抗菌肽(LL-37)和抗菌肽反应调节剂 ClnR 的调节,表明宿主肽信号控制甘氨酸分解代谢。LL-37 诱导甘氨酸发酵证明了宿主免疫反应与毒素产生和孢子形成的细菌反应之间的直接联系。

相似文献

1
Glycine fermentation by promotes virulence and spore formation, and is induced by host cathelicidin.
Infect Immun. 2023 Oct 17;91(10):e0031923. doi: 10.1128/iai.00319-23. Epub 2023 Sep 27.
2
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13.
3
Proline-dependent regulation of Clostridium difficile Stickland metabolism.
J Bacteriol. 2013 Feb;195(4):844-54. doi: 10.1128/JB.01492-12. Epub 2012 Dec 7.
4
The pH-responsive SmrR-SmrT system modulates antimicrobial resistance, spore formation, and toxin production.
Infect Immun. 2024 Mar 12;92(3):e0046123. doi: 10.1128/iai.00461-23. Epub 2024 Feb 12.
6
Role of glycogen metabolism in virulence.
mSphere. 2024 Sep 25;9(9):e0031024. doi: 10.1128/msphere.00310-24. Epub 2024 Aug 27.
7
High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.
Int J Med Microbiol. 2017 Sep;307(6):311-320. doi: 10.1016/j.ijmm.2017.05.007. Epub 2017 Jun 1.
9
The C. difficile clnRAB operon initiates adaptations to the host environment in response to LL-37.
PLoS Pathog. 2018 Aug 20;14(8):e1007153. doi: 10.1371/journal.ppat.1007153. eCollection 2018 Aug.

引用本文的文献

1
Proline Stickland fermentation supports spore maturation.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0055125. doi: 10.1128/aem.00551-25. Epub 2025 Jun 4.
2
The Pxp Complex Detoxifies 5-Oxoproline and Promotes the Growth of Clostridioides difficile.
Mol Microbiol. 2025 Jul;124(1):66-76. doi: 10.1111/mmi.15373. Epub 2025 May 8.
3
colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an model.
mSphere. 2025 Feb 25;10(2):e0104924. doi: 10.1128/msphere.01049-24. Epub 2025 Jan 16.
4
The current riboswitch landscape in .
Microbiology (Reading). 2024 Oct;170(10). doi: 10.1099/mic.0.001508.
5
Adaptation mechanisms of Clostridioides difficile to auranofin and its impact on human gut microbiota.
NPJ Biofilms Microbiomes. 2024 Sep 17;10(1):86. doi: 10.1038/s41522-024-00551-3.
6
colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an model.
bioRxiv. 2024 Dec 11:2024.07.17.603937. doi: 10.1101/2024.07.17.603937.
7
New treatment approaches for infections: alternatives to antibiotics and fecal microbiota transplantation.
Gut Microbes. 2024 Jan-Dec;16(1):2337312. doi: 10.1080/19490976.2024.2337312. Epub 2024 Apr 9.
8
The multiplicity of thioredoxin systems meets the specific lifestyles of Clostridia.
PLoS Pathog. 2024 Feb 8;20(2):e1012001. doi: 10.1371/journal.ppat.1012001. eCollection 2024 Feb.

本文引用的文献

1
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13.
2
Genetic mechanisms governing sporulation initiation in Clostridioides difficile.
Curr Opin Microbiol. 2022 Apr;66:32-38. doi: 10.1016/j.mib.2021.12.001. Epub 2021 Dec 18.
5
Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen .
Front Microbiol. 2020 Aug 13;11:1939. doi: 10.3389/fmicb.2020.01939. eCollection 2020.
7
Role of the global regulator Rex in control of NAD -regeneration in Clostridioides (Clostridium) difficile.
Mol Microbiol. 2019 Jun;111(6):1671-1688. doi: 10.1111/mmi.14245. Epub 2019 Apr 2.
8
RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
mBio. 2019 Mar 12;10(2):e01991-18. doi: 10.1128/mBio.01991-18.
9
Metabolism the Difficile Way: The Key to the Success of the Pathogen .
Front Microbiol. 2019 Feb 15;10:219. doi: 10.3389/fmicb.2019.00219. eCollection 2019.
10
Iron Regulation in .
Front Microbiol. 2018 Dec 24;9:3183. doi: 10.3389/fmicb.2018.03183. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验