Suppr超能文献

鼠伤寒沙门氏菌血清型 Typhimurium 通过 Fim 介导的可逆黏附以及不可逆的 III 型分泌系统 1 介导的对接作用黏附 HeLa 细胞。

Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking.

机构信息

Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland.

出版信息

Infect Immun. 2011 Jan;79(1):330-41. doi: 10.1128/IAI.00581-10. Epub 2010 Oct 25.

Abstract

The food-borne pathogen Salmonella enterica serovar Typhimurium invades mammalian epithelial cells. This multistep process comprises bacterial binding to the host cell, activation of the Salmonella type three secretion system 1 (T1), injection of effector proteins, triggering of host cell actin rearrangements, and S. Typhimurium entry. While the latter steps are well understood, much less is known about the initial binding step. Earlier work had implicated adhesins (but not T1) or T1 (but not other adhesins). We have studied here the Salmonella virulence factors mediating S. Typhimurium binding to HeLa cells. Using an automated microscopy assay and isogenic S. Typhimurium mutants, we analyzed the role of T1 and of several known adhesins (Fim, Pef, Lpf, Agf, and Shd) in host cell binding. In wild-type S. Typhimurium, host cell binding was mostly attributable to T1. However, in the absence of T1, Fim (but not Pef, Lpf, Agf, and Shd) also mediated HeLa cell binding. Furthermore, in the absence of T1 and type I fimbriae (Fim), we still observed residual binding, pointing toward at least one additional, unidentified binding mechanism. Dissociation experiments established that T1-mediated binding was irreversible ("docking"), while Fim-mediated binding was reversible ("reversible adhesion"). Finally, we show that noninvasive bacteria docking via T1 or adhering via Fim can efficiently invade HeLa cells, if actin rearrangements are triggered in trans by a wild-type S. Typhimurium helper strain. Our data show that binding to HeLa cells is mediated by at least two different mechanisms and that both can lead to invasion if actin rearrangements are triggered.

摘要

食源性病原体鼠伤寒沙门氏菌血清型 Typhimurium 侵袭哺乳动物上皮细胞。这个多步骤过程包括细菌与宿主细胞的结合、沙门氏菌 1 型 III 型分泌系统(T1)的激活、效应蛋白的注入、宿主细胞肌动蛋白重排的触发以及 S. Typhimurium 的进入。虽然后几个步骤已经得到很好的理解,但对于初始结合步骤知之甚少。早期的研究表明,黏附素(但不是 T1)或 T1(但不是其他黏附素)都参与其中。我们在此研究了介导 S. Typhimurium 与 HeLa 细胞结合的沙门氏菌毒力因子。我们使用自动化显微镜检测和同源 S. Typhimurium 突变体分析了 T1 和几种已知黏附素(Fim、Pef、Lpf、Agf 和 Shd)在宿主细胞结合中的作用。在野生型 S. Typhimurium 中,宿主细胞结合主要归因于 T1。然而,在缺乏 T1 的情况下,Fim(但不是 Pef、Lpf、Agf 和 Shd)也介导了 HeLa 细胞的结合。此外,在缺乏 T1 和 I 型菌毛(Fim)的情况下,我们仍然观察到残留的结合,这表明至少存在一种额外的、未识别的结合机制。解离实验证实 T1 介导的结合是不可逆的(“对接”),而 Fim 介导的结合是可逆的(“可逆黏附”)。最后,我们表明,通过 T1 对接或通过 Fim 黏附的非侵袭性细菌如果被野生型 S. Typhimurium 辅助菌株通过转导触发肌动蛋白重排,能够有效地入侵 HeLa 细胞。我们的数据表明,与 HeLa 细胞的结合是由至少两种不同的机制介导的,如果触发肌动蛋白重排,这两种机制都可以导致入侵。

相似文献

3
Adhesin-dependent binding and uptake of Salmonella enterica serovar Typhimurium by dendritic cells.
Microbiology (Reading). 2007 Apr;153(Pt 4):1059-1069. doi: 10.1099/mic.0.2006/000331-0.
4
Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion.
PLoS Pathog. 2012;8(7):e1002810. doi: 10.1371/journal.ppat.1002810. Epub 2012 Jul 26.
7
FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium.
Infect Immun. 2012 Sep;80(9):3289-96. doi: 10.1128/IAI.00331-12. Epub 2012 Jul 9.
9
10
A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion.
PLoS One. 2016 Sep 14;11(9):e0161965. doi: 10.1371/journal.pone.0161965. eCollection 2016.

引用本文的文献

1
Determinants of divergent and epithelial colonization strategies resolved in human enteroids and colonoids.
mBio. 2025 Jul 9;16(7):e0091125. doi: 10.1128/mbio.00911-25. Epub 2025 May 30.
2
Subversion of a family of antimicrobial proteins by .
Front Cell Infect Microbiol. 2024 Mar 5;14:1375887. doi: 10.3389/fcimb.2024.1375887. eCollection 2024.
3
SifA SUMOylation governs Salmonella Typhimurium intracellular survival via modulation of lysosomal function.
PLoS Pathog. 2023 Sep 29;19(9):e1011686. doi: 10.1371/journal.ppat.1011686. eCollection 2023 Sep.
4
Evaluation of the role of clathrin and bacterial viability in the endocytosis of .
Front Vet Sci. 2023 Jan 30;10:1005676. doi: 10.3389/fvets.2023.1005676. eCollection 2023.
5
Polyimidazolium Protects against an Invasive Clinical Isolate of Salmonella Typhimurium.
Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0059722. doi: 10.1128/aac.00597-22. Epub 2022 Sep 12.
6
Salmonella enterica serovar Typhimurium chitinases modulate the intestinal glycome and promote small intestinal invasion.
PLoS Pathog. 2022 Apr 28;18(4):e1010167. doi: 10.1371/journal.ppat.1010167. eCollection 2022 Apr.
7
A motile doublet form of Salmonella Typhimurium diversifies target search behavior at the epithelial surface.
Mol Microbiol. 2022 May;117(5):1156-1172. doi: 10.1111/mmi.14898. Epub 2022 Apr 12.
8
Determination of an effective agent combination using nisin against Salmonella biofilm.
Arch Microbiol. 2022 Feb 8;204(3):167. doi: 10.1007/s00203-022-02766-4.
10
The Mammalian Membrane Microenvironment Regulates the Sequential Attachment of Bacteria to Host Cells.
mBio. 2021 Aug 31;12(4):e0139221. doi: 10.1128/mBio.01392-21. Epub 2021 Aug 3.

本文引用的文献

1
Enhanced CellClassifier: a multi-class classification tool for microscopy images.
BMC Bioinformatics. 2010 Jan 14;11:30. doi: 10.1186/1471-2105-11-30.
2
3
Population context determines cell-to-cell variability in endocytosis and virus infection.
Nature. 2009 Sep 24;461(7263):520-3. doi: 10.1038/nature08282. Epub 2009 Aug 26.
5
FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells.
Microbiology (Reading). 2009 May;155(Pt 5):1623-1633. doi: 10.1099/mic.0.026286-0. Epub 2009 Apr 21.
7
Salmonella takes control: effector-driven manipulation of the host.
Curr Opin Microbiol. 2009 Feb;12(1):117-24. doi: 10.1016/j.mib.2008.12.001. Epub 2009 Jan 20.
8
Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread?
Cell Host Microbe. 2008 Oct 16;4(4):314-23. doi: 10.1016/j.chom.2008.09.005.
9
Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers.
Cell Microbiol. 2008 Nov;10(11):2364-76. doi: 10.1111/j.1462-5822.2008.01218.x. Epub 2008 Aug 18.
10
Deciphering interplay between Salmonella invasion effectors.
PLoS Pathog. 2008 Apr 4;4(4):e1000037. doi: 10.1371/journal.ppat.1000037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验