Suppr超能文献

计算预测革兰氏阴性菌中的 III 型和 IV 型分泌效应子。

Computational prediction of type III and IV secreted effectors in gram-negative bacteria.

机构信息

Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, MSIN: J4-33, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA.

出版信息

Infect Immun. 2011 Jan;79(1):23-32. doi: 10.1128/IAI.00537-10. Epub 2010 Oct 25.

Abstract

In this review, we provide an overview of the methods employed in four recent studies that described novel methods for computational prediction of secreted effectors from type III and IV secretion systems in Gram-negative bacteria. We present the results of these studies in terms of performance at accurately predicting secreted effectors and similarities found between secretion signals that may reflect biologically relevant features for recognition. We discuss the Web-based tools for secreted effector prediction described in these studies and announce the availability of our tool, the SIEVE server (http://www.sysbep.org/sieve). Finally, we assess the accuracies of the three type III effector prediction methods on a small set of proteins not known prior to the development of these tools that we recently discovered and validated using both experimental and computational approaches. Our comparison shows that all methods use similar approaches and, in general, arrive at similar conclusions. We discuss the possibility of an order-dependent motif in the secretion signal, which was a point of disagreement in the studies. Our results show that there may be classes of effectors in which the signal has a loosely defined motif and others in which secretion is dependent only on compositional biases. Computational prediction of secreted effectors from protein sequences represents an important step toward better understanding the interaction between pathogens and hosts.

摘要

在这篇综述中,我们概述了最近四项研究中采用的方法,这些研究描述了从革兰氏阴性菌的 III 型和 IV 型分泌系统中计算预测分泌效应子的新方法。我们根据这些研究中准确预测分泌效应子的性能以及可能反映生物相关特征的分泌信号之间的相似性来呈现这些研究的结果,用于识别。我们讨论了这些研究中描述的用于分泌效应子预测的基于网络的工具,并宣布了我们的工具 SIEVE 服务器(http://www.sysbep.org/sieve)的可用性。最后,我们评估了三种 III 型效应子预测方法在我们最近使用实验和计算方法发现和验证的一小部分在这些工具开发之前未知的蛋白质上的准确性。我们的比较表明,所有方法都使用相似的方法,并且通常得出相似的结论。我们讨论了在分泌信号中存在顺序相关基序的可能性,这是这些研究中的一个分歧点。我们的结果表明,可能存在一类效应子,其中信号具有定义不严格的基序,而其他效应子的分泌仅取决于组成性偏差。从蛋白质序列计算预测分泌效应子是更好地理解病原体与宿主之间相互作用的重要步骤。

相似文献

4
Sequence-based prediction of type III secreted proteins.基于序列的III型分泌蛋白预测。
PLoS Pathog. 2009 Apr;5(4):e1000376. doi: 10.1371/journal.ppat.1000376. Epub 2009 Apr 24.
10
Type VI Secretion Effectors: Methodologies and Biology.VI型分泌效应蛋白:方法与生物学
Front Cell Infect Microbiol. 2017 Jun 15;7:254. doi: 10.3389/fcimb.2017.00254. eCollection 2017.

引用本文的文献

4
Protein Sorting Prediction.蛋白质分拣预测。
Methods Mol Biol. 2024;2715:27-63. doi: 10.1007/978-1-0716-3445-5_2.

本文引用的文献

8
Sequence-based prediction of type III secreted proteins.基于序列的III型分泌蛋白预测。
PLoS Pathog. 2009 Apr;5(4):e1000376. doi: 10.1371/journal.ppat.1000376. Epub 2009 Apr 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验