Suppr超能文献

基于稀疏正则化的生物发光断层成像重建:一种多级自适应有限元方法

Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method.

作者信息

He Xiaowei, Hou Yanbin, Chen Duofang, Jiang Yuchuan, Shen Man, Liu Junting, Zhang Qitan, Tian Jie

机构信息

Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an 710071, China.

出版信息

Int J Biomed Imaging. 2011;2011:203537. doi: 10.1155/2011/203537. Epub 2010 Oct 4.

Abstract

Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction with l(1) regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT.

摘要

生物发光断层扫描(BLT)是一种在细胞和分子水平上研究生理和病理过程的很有前景的工具。在大多数临床或临床前实践中,当用有限元方法(FEM)求解BLT时,为了以可接受的分辨率恢复源,需要进行精细离散化。然而,均匀的精细网格会导致数据集庞大,而过细的网格可能会加剧BLT的不适定性。此外,到目前为止尚未同时获得密度和功率的准确定量信息。在本文中,我们提出了一种基于自适应有限元框架的新型多级稀疏重建方法。在该方法中,允许的源区域随着自适应局部网格细化而逐渐减小。通过在多级自适应网格上使用具有l(1)正则化的稀疏重建,可以实现密度和功率的同时恢复以及源的精确定位。非均匀体模和小鼠图谱模型的实验结果证明了其在定量BLT应用中的有效性和潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee54/2952815/15e2f75ba3fb/IJBI2011-203537.001.jpg

相似文献

1
3
Multi-atlas registration and adaptive hexahedral voxel discretization for fast bioluminescence tomography.
Biomed Opt Express. 2016 Mar 29;7(4):1549-60. doi: 10.1364/BOE.7.001549. eCollection 2016 Apr 1.
4
Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation.
Phys Med Biol. 2007 Aug 7;52(15):4497-512. doi: 10.1088/0031-9155/52/15/009. Epub 2007 Jul 3.
5
A trust region method in adaptive finite element framework for bioluminescence tomography.
Opt Express. 2010 Mar 29;18(7):6477-91. doi: 10.1364/OE.18.006477.
6
A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography.
Opt Express. 2009 Aug 17;17(17):14481-94. doi: 10.1364/oe.17.014481.
7
Fast source reconstruction for bioluminescence tomography based on sparse regularization.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2583-6. doi: 10.1109/TBME.2010.2059024. Epub 2010 Jul 15.
8
Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography.
Biomed Opt Express. 2012 Nov 1;3(11):2916-36. doi: 10.1364/BOE.3.002916. Epub 2012 Oct 23.
9
Hybrid multilevel sparse reconstruction for a whole domain bioluminescence tomography using adaptive finite element.
Comput Math Methods Med. 2013;2013:548491. doi: 10.1155/2013/548491. Epub 2013 Mar 3.
10
Spatial weighed element based FEM incorporating a priori information on bioluminescence tomography.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):874-82. doi: 10.1007/978-3-540-85988-8_104.

引用本文的文献

2
Hybrid multilevel sparse reconstruction for a whole domain bioluminescence tomography using adaptive finite element.
Comput Math Methods Med. 2013;2013:548491. doi: 10.1155/2013/548491. Epub 2013 Mar 3.
3
Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography.
Biomed Opt Express. 2012 Nov 1;3(11):2916-36. doi: 10.1364/BOE.3.002916. Epub 2012 Oct 23.
4
Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise.
Biomed Opt Express. 2012 Sep 1;3(9):2131-41. doi: 10.1364/BOE.3.002131. Epub 2012 Aug 15.

本文引用的文献

1
Multispectral bioluminescence tomography: methodology and simulation.
Int J Biomed Imaging. 2006;2006:57614. doi: 10.1155/IJBI/2006/57614. Epub 2006 Feb 5.
3
A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography.
Opt Express. 2009 Aug 17;17(17):14481-94. doi: 10.1364/oe.17.014481.
5
Image reconstruction for bioluminescence tomography from partial measurement.
Opt Express. 2007 Sep 3;15(18):11095-116. doi: 10.1364/oe.15.011095.
6
A multilevel adaptive finite element algorithm for bioluminescence tomography.
Opt Express. 2006 Sep 4;14(18):8211-23. doi: 10.1364/oe.14.008211.
7
In vivo mouse studies with bioluminescence tomography.
Opt Express. 2006 Aug 21;14(17):7801-9. doi: 10.1364/oe.14.007801.
8
Practical reconstruction method for bioluminescence tomography.
Opt Express. 2005 Sep 5;13(18):6756-71. doi: 10.1364/opex.13.006756.
9
Spectrally resolved bioluminescence tomography using the reciprocity approach.
Med Phys. 2008 Nov;35(11):4863-71. doi: 10.1118/1.2982138.
10
An optimal permissible source region strategy for multispectral bioluminescence tomography.
Opt Express. 2008 Sep 29;16(20):15640-54. doi: 10.1364/oe.16.015640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验