He Xiaowei, Hou Yanbin, Chen Duofang, Jiang Yuchuan, Shen Man, Liu Junting, Zhang Qitan, Tian Jie
Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an 710071, China.
Int J Biomed Imaging. 2011;2011:203537. doi: 10.1155/2011/203537. Epub 2010 Oct 4.
Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction with l(1) regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT.
生物发光断层扫描(BLT)是一种在细胞和分子水平上研究生理和病理过程的很有前景的工具。在大多数临床或临床前实践中,当用有限元方法(FEM)求解BLT时,为了以可接受的分辨率恢复源,需要进行精细离散化。然而,均匀的精细网格会导致数据集庞大,而过细的网格可能会加剧BLT的不适定性。此外,到目前为止尚未同时获得密度和功率的准确定量信息。在本文中,我们提出了一种基于自适应有限元框架的新型多级稀疏重建方法。在该方法中,允许的源区域随着自适应局部网格细化而逐渐减小。通过在多级自适应网格上使用具有l(1)正则化的稀疏重建,可以实现密度和功率的同时恢复以及源的精确定位。非均匀体模和小鼠图谱模型的实验结果证明了其在定量BLT应用中的有效性和潜力。