Suppr超能文献

脊髓灰质炎病毒 RNA 从接近二倍对称轴的衣壳中释放出来。

Poliovirus RNA is released from the capsid near a twofold symmetry axis.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.

出版信息

J Virol. 2011 Jan;85(2):776-83. doi: 10.1128/JVI.00531-10. Epub 2010 Oct 27.

Abstract

After recognizing and binding to its host cell, poliovirus (like other nonenveloped viruses) faces the challenge of translocating its genome across a cellular membrane and into the cytoplasm. To avoid entanglement with the capsid, the RNA must exit via a single site on the virion surface. However, the mechanism by which a single site is selected (from among 60 equivalents) is unknown; and until now, even its location on the virion surface has been controversial. To help to elucidate the mechanism of infection, we have used single-particle cryo-electron microscopy and tomography to reconstruct conformationally altered intermediates that are formed by the poliovirion at various stages of the poliovirus infection process. Recently, we reported icosahedrally symmetric structures for two forms of the end-state 80S empty capsid particle. Surprisingly, RNA was frequently visible near the capsid; and in a subset of the virions, RNA was seen on both the inside and outside of the capsid, caught in the act of exiting. To visualize RNA exiting, we have now determined asymmetric reconstructions from that subset, using both single-particle cryo-electron microscopy and cryo-electron tomographic methods, producing independent reconstructions at ∼50-Å resolution. Contrary to predictions in the literature, the footprint of RNA on the capsid surface is located close to a viral 2-fold axis, covering a slot-shaped area of reduced density that is present in both of the symmetrized 80S reconstructions and which extends by about 20 Å away from the 2-fold axis toward each neighboring 5-fold axis.

摘要

在识别并结合其宿主细胞后,脊髓灰质炎病毒(与其他无包膜病毒一样)面临着将其基因组穿过细胞膜并转移到细胞质中的挑战。为了避免与衣壳纠缠,RNA 必须通过病毒粒子表面上的单个位点逸出。然而,选择单个位点(在 60 个等价物中)的机制尚不清楚;并且直到现在,即使它在病毒粒子表面上的位置也存在争议。为了帮助阐明感染机制,我们使用单颗粒冷冻电子显微镜和断层扫描技术来重建在脊髓灰质炎病毒感染过程的各个阶段形成的构象改变的中间产物。最近,我们报道了两种形式的终态 80S 空衣壳颗粒的二十面体对称结构。令人惊讶的是,RNA 经常在衣壳附近可见;并且在一部分病毒粒子中,RNA 同时在内侧和外侧衣壳上可见,处于即将逸出的状态。为了可视化 RNA 逸出,我们现在已经使用单颗粒冷冻电子显微镜和冷冻电子断层扫描方法从该亚群中确定了不对称重建,以产生约 50-Å 分辨率的独立重建。与文献中的预测相反,RNA 在衣壳表面上的足迹位于接近病毒 2 倍轴的位置,覆盖了一个存在于两个对称化 80S 重建中的槽形密度降低区域,并且从 2 倍轴向每个相邻的 5 倍轴延伸约 20 Å。

相似文献

1
Poliovirus RNA is released from the capsid near a twofold symmetry axis.
J Virol. 2011 Jan;85(2):776-83. doi: 10.1128/JVI.00531-10. Epub 2010 Oct 27.
5
An externalized polypeptide partitions between two distinct sites on genome-released poliovirus particles.
J Virol. 2011 Oct;85(19):9974-83. doi: 10.1128/JVI.05013-11. Epub 2011 Jul 20.
6
Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate.
PLoS Pathog. 2020 Sep 30;16(9):e1008920. doi: 10.1371/journal.ppat.1008920. eCollection 2020 Sep.
7
Real-Time Imaging of Polioviral RNA Translocation across a Membrane.
mBio. 2021 Feb 23;12(1):e03695-20. doi: 10.1128/mBio.03695-20.
8
RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors.
J Virol. 2013 Apr;87(7):3903-14. doi: 10.1128/JVI.03209-12. Epub 2013 Jan 30.
9
Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus.
J Virol. 2000 Feb;74(3):1342-54. doi: 10.1128/jvi.74.3.1342-1354.2000.

引用本文的文献

1
Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells.
Subcell Biochem. 2024;105:533-566. doi: 10.1007/978-3-031-65187-8_15.
3
Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells.
Commun Biol. 2024 Nov 8;7(1):1465. doi: 10.1038/s42003-024-07147-9.
6
Bipartite viral RNA genome heterodimerization influences genome packaging and virion thermostability.
J Virol. 2024 Mar 19;98(3):e0182023. doi: 10.1128/jvi.01820-23. Epub 2024 Feb 8.
7
Editorial: Advances in host-pathogen interactions for diseases in animals and birds.
Front Vet Sci. 2023 Sep 11;10:1282110. doi: 10.3389/fvets.2023.1282110. eCollection 2023.
8
Bioorthogonal Engineered Virus-Like Nanoparticles for Efficient Gene Therapy.
Nanomicro Lett. 2023 Aug 12;15(1):197. doi: 10.1007/s40820-023-01153-y.
9
Investigating the mechanism of Echovirus 30 cell invasion.
Front Microbiol. 2023 Jul 6;14:1174410. doi: 10.3389/fmicb.2023.1174410. eCollection 2023.

本文引用的文献

1
Picornaviruses.
Curr Top Microbiol Immunol. 2010;343:43-89. doi: 10.1007/82_2010_37.
3
Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18284-9. doi: 10.1073/pnas.0807848105. Epub 2008 Nov 14.
4
DNA poised for release in bacteriophage phi29.
Structure. 2008 Jun;16(6):935-43. doi: 10.1016/j.str.2008.02.024.
5
Post-imaging fiducial markers aid in the orientation determination of complexes with mixed or unknown symmetry.
J Struct Biol. 2008 Jun;162(3):480-90. doi: 10.1016/j.jsb.2008.03.006. Epub 2008 Mar 25.
7
Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2.
EMBO J. 2007 Sep 5;26(17):4016-28. doi: 10.1038/sj.emboj.7601831. Epub 2007 Aug 23.
8
Imaging poliovirus entry in live cells.
PLoS Biol. 2007 Jul;5(7):e183. doi: 10.1371/journal.pbio.0050183. Epub 2007 Jul 10.
9
Visualization of the herpes simplex virus portal in situ by cryo-electron tomography.
Virology. 2007 May 10;361(2):426-34. doi: 10.1016/j.virol.2006.10.047. Epub 2006 Dec 22.
10
Electron cryotomography reveals the portal in the herpesvirus capsid.
J Virol. 2007 Feb;81(4):2065-8. doi: 10.1128/JVI.02053-06. Epub 2006 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验