Suppr超能文献

低温电子显微镜重建显示脊髓灰质炎病毒 135S 颗粒准备与膜相互作用和 RNA 释放。

Cryo-electron microscopy reconstruction shows poliovirus 135S particles poised for membrane interaction and RNA release.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Virol. 2014 Feb;88(3):1758-70. doi: 10.1128/JVI.01949-13. Epub 2013 Nov 20.

Abstract

During infection, binding of mature poliovirus to cell surface receptors induces an irreversible expansion of the capsid, to form an infectious cell-entry intermediate particle that sediments at 135S. In these expanded virions, the major capsid proteins (VP1 to VP3) adopt an altered icosahedral arrangement to open holes in the capsid at 2-fold and quasi-3-fold axes, and internal polypeptides VP4 and the N terminus of VP1, which can bind membranes, become externalized. Cryo-electron microscopy images for 117,330 particles were collected using Leginon and reconstructed using FREALIGN. Improved rigid-body positioning of major capsid proteins established reliably which polypeptide segments become disordered or rearranged. The virus-to-135S transition includes expansion of 4%, rearrangements of the GH loops of VP3 and VP1, and disordering of C-terminal extensions of VP1 and VP2. The N terminus of VP1 rearranges to become externalized near its quasi-3-fold exit, binds to rearranged GH loops of VP3 and VP1, and attaches to the top surface of VP2. These details improve our understanding of subsequent stages of infection, including endocytosis and RNA transfer into the cytoplasm.

摘要

在感染过程中,成熟的脊髓灰质炎病毒与细胞表面受体的结合会诱导衣壳不可逆地扩张,形成一种可感染细胞的进入中间颗粒,在 135S 处沉降。在这些扩张的病毒粒子中,主要衣壳蛋白(VP1 至 VP3)采用改变的二十面体排列,在 2 倍和准 3 倍轴处打开衣壳上的孔,内部多肽 VP4 和 VP1 的 N 端,可与膜结合,变得外部化。使用 Leginon 收集了 117330 个颗粒的冷冻电镜图像,并使用 FREALIGN 进行了重建。可靠地建立了主要衣壳蛋白的改进刚体定位,确定了哪些多肽片段变得无序或重排。病毒到 135S 的转变包括 4%的扩张、VP3 和 VP1 的 GH 环的重排以及 VP1 和 VP2 的 C 端延伸的无序化。VP1 的 N 端重排,在其准 3 倍出口附近变得外部化,与 VP3 和 VP1 的重排 GH 环结合,并附着在 VP2 的顶面。这些细节有助于我们理解随后的感染阶段,包括内吞作用和 RNA 转移到细胞质中。

相似文献

2
Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate.
PLoS Pathog. 2020 Sep 30;16(9):e1008920. doi: 10.1371/journal.ppat.1008920. eCollection 2020 Sep.
5
An externalized polypeptide partitions between two distinct sites on genome-released poliovirus particles.
J Virol. 2011 Oct;85(19):9974-83. doi: 10.1128/JVI.05013-11. Epub 2011 Jul 20.
6
Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus.
J Virol. 2000 Feb;74(3):1342-54. doi: 10.1128/jvi.74.3.1342-1354.2000.
7
Structure of the Fab-labeled "breathing" state of native poliovirus.
J Virol. 2012 May;86(10):5959-62. doi: 10.1128/JVI.05990-11. Epub 2012 Mar 7.
8
A mutation in VP4 defines a new step in the late stages of cell entry by poliovirus.
J Virol. 1993 Aug;67(8):5075-8. doi: 10.1128/JVI.67.8.5075-5078.1993.
9
ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2024251118.

引用本文的文献

1
Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells.
Subcell Biochem. 2024;105:533-566. doi: 10.1007/978-3-031-65187-8_15.
5
Detection methods targeting the positive- and negative-sense RNA transcripts from plus-stranded RNA viruses.
APMIS. 2022 May;130(5):284-292. doi: 10.1111/apm.13202. Epub 2022 Jan 26.
6
Manipulation of Host Cell Organelles by Intracellular Pathogens.
Int J Mol Sci. 2021 Jun 17;22(12):6484. doi: 10.3390/ijms22126484.
7
Antiviral adsorption activity of porous silicon nanoparticles against different pathogenic human viruses.
Bioact Mater. 2022 Jan;7:39-46. doi: 10.1016/j.bioactmat.2021.06.001. Epub 2021 Jun 16.
8
Real-Time Imaging of Polioviral RNA Translocation across a Membrane.
mBio. 2021 Feb 23;12(1):e03695-20. doi: 10.1128/mBio.03695-20.
10
Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate.
PLoS Pathog. 2020 Sep 30;16(9):e1008920. doi: 10.1371/journal.ppat.1008920. eCollection 2020 Sep.

本文引用的文献

1
Picornavirus uncoating intermediate captured in atomic detail.
Nat Commun. 2013;4:1929. doi: 10.1038/ncomms2889.
2
RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors.
J Virol. 2013 Apr;87(7):3903-14. doi: 10.1128/JVI.03209-12. Epub 2013 Jan 30.
3
A 3D framework for understanding enterovirus 71.
Nat Struct Mol Biol. 2012 Apr 4;19(4):367-8. doi: 10.1038/nsmb.2276.
4
Structure of the Fab-labeled "breathing" state of native poliovirus.
J Virol. 2012 May;86(10):5959-62. doi: 10.1128/JVI.05990-11. Epub 2012 Mar 7.
5
A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71.
Nat Struct Mol Biol. 2012 Mar 4;19(4):424-9. doi: 10.1038/nsmb.2255.
6
Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid.
PLoS Pathog. 2012 Jan;8(1):e1002473. doi: 10.1371/journal.ppat.1002473. Epub 2012 Jan 5.
7
An externalized polypeptide partitions between two distinct sites on genome-released poliovirus particles.
J Virol. 2011 Oct;85(19):9974-83. doi: 10.1128/JVI.05013-11. Epub 2011 Jul 20.
8
Poliovirus RNA is released from the capsid near a twofold symmetry axis.
J Virol. 2011 Jan;85(2):776-83. doi: 10.1128/JVI.00531-10. Epub 2010 Oct 27.
9
Picornaviruses.
Curr Top Microbiol Immunol. 2010;343:43-89. doi: 10.1007/82_2010_37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验