ITODYS, Université Paris Diderot-Paris 7 (UMR CNRS 7086), 15 rue Jean de Baïf, 75013 Paris, France.
ACS Nano. 2010 Nov 23;4(11):6491-500. doi: 10.1021/nn101451q. Epub 2010 Oct 28.
This paper describes a general stepwise strategy combining diazonium salt, surface-initiated atom transfer radical polymerization (SI-ATRP), and click chemistry for an efficient gold surface functionalization by poly(N-isopropylacrylamide) (PNIPAM) brushes and gold nanoparticle assemblies. We designed by this way a new plasmonic device made of gold nanoparticles separated from a gold film through a thermoresponsive polymer layer. This organic layer responds to temperature variations by conformational changes (with a characteristic temperature called the lower critical solution temperature, LCST) and is therefore able to vary the distance between the gold nanoparticles and the gold film. The optical properties of these stimulable substrates were probed by surface-enhanced raman scattering (SERS) using methylene blue (MB) as a molecular probe. We show that an increase of the external temperature reversibly induces a significant enhancement of the MB SERS signal. This was attributed to a stronger interaction between the gold nanoparticles and the gold substrate. The temperature-responsive plasmonic devices developed in this paper thus provide a dynamic SERS platform, with thermally switchable electromagnetic coupling between the gold nanoparticles and the gold surface.
本文描述了一种通用的逐步策略,结合重氮盐、表面引发原子转移自由基聚合(SI-ATRP)和点击化学,通过聚(N-异丙基丙烯酰胺)(PNIPAM)刷和金纳米粒子组装物对金表面进行高效功能化。我们通过这种方式设计了一种新的等离子体装置,该装置由通过热敏聚合物层与金膜分离的金纳米粒子组成。该有机层通过构象变化(具有称为低临界溶液温度(LCST)的特征温度)响应温度变化,因此能够改变金纳米粒子与金膜之间的距离。使用亚甲蓝(MB)作为分子探针,通过表面增强拉曼散射(SERS)探测这些可刺激基底的光学性质。我们表明,外部温度的升高可使 MB SERS 信号发生可逆的显著增强。这归因于金纳米粒子与金基底之间更强的相互作用。本文开发的温度响应等离子体装置因此提供了一个动态 SERS 平台,具有金纳米粒子和金表面之间可热切换的电磁耦合。