Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University, Jinju 660-701, Republic of Korea.
J Biotechnol. 2011 Jan 10;151(1):30-42. doi: 10.1016/j.jbiotec.2010.10.072. Epub 2010 Oct 26.
Polyhydroxyalkanoic acids (PHAs) and rhamnolipids considered as biotechnologically important compounds are simultaneously produced by Pseudomonas aeruginosa. Both are synthesized from common precursors, (R)-3-hydroxyfatty acids. To find the probable metabolic relationship between their syntheses, we investigated the PHA and rhamnolipids production in four pha (phaC1, phaC2, phaZ, and phaG), four rhl (rhlA, rhlB, rhlR, and rhlI) and rpoS mutant strains of P. aeruginosa PA14 and PAO1 grown in minimal medium containing 70 mM fructose or 30 mM decanoic acid. Higher PHA accumulation was found in the rhamnolipid-negative mutants than in the wild-type strains, suggesting that 3-hydroxyfatty acid precursors become more available for PHA synthesis when rhamnolipids synthesis is absent. However, compared to the wild-type strains, rhamnolipids production was not enhanced in the four pha mutants of P. aeruginosa PA14 and PAO1 which indicates that rhamnolipids production in P. aeruginosa could be tightly regulated at the transcriptional level by a quorum-sensing response. The metabolic pathways for PHA and rhamnolipid synthesis from medium-chain-length fatty acids were also investigated using octanoic-1-¹³C acid. ¹³C NMR analysis revealed that the monomer-unit (R)-3-hydroxyoctanoate-1-¹³C being converted from the octanoic acid substrate was effectively incorporated into PHA. In the rhamnolipid synthesis, the (R)-3-hydroxyoctanoate-1-¹³C is suggested to be firstly converted to (R)-3-hydroxydecanoate-1,3-¹³C via fatty acid de novo biosynthesis pathway and then further processed into (R)-3-((R)-3-hydroxyalkanoyloxy)alkanoic acids (HAAs) via RhlA. The ratio of mono- to dirhamnolipids in the product depended on the type of carbon sources. The rhlB mutant could be exploited as an efficient producer of the important biosurfactant HAAs (e.g., ~700 mg/L HAAs was obtained when grown on 60 mM octanoic acid).
聚羟基脂肪酸 (PHA) 和鼠李糖脂被认为是具有重要生物技术意义的化合物,可同时由铜绿假单胞菌产生。这两种物质都是由共同的前体(R)-3-羟基脂肪酸合成的。为了研究它们合成之间可能存在的代谢关系,我们研究了在含有 70mM 果糖或 30mM 癸酸的最小培养基中生长的铜绿假单胞菌 PA14 和 PAO1 的四个 pha(phaC1、phaC2、phaZ 和 phaG)、四个 rhl(rhlA、rhlB、rhlR 和 rhlI)和 rpoS 突变菌株中 PHA 和鼠李糖脂的生产。与野生型菌株相比,鼠李糖脂阴性突变体中 PHA 的积累更高,这表明当鼠李糖脂合成不存在时,3-羟基脂肪酸前体更有利于 PHA 的合成。然而,与野生型菌株相比,PA14 和 PAO1 的四个 pha 突变体中鼠李糖脂的产量并没有增加,这表明铜绿假单胞菌中鼠李糖脂的产生可以通过群体感应反应在转录水平上受到严格调控。我们还使用辛烷酸-1-¹³C 酸研究了从中链脂肪酸合成 PHA 和鼠李糖脂的代谢途径。¹³C NMR 分析表明,从辛烷酸底物转化而来的单体单元(R)-3-羟基辛烷酸-1-¹³C 有效地掺入到 PHA 中。在鼠李糖脂合成中,(R)-3-羟基辛烷酸-1-¹³C 首先通过脂肪酸从头生物合成途径转化为(R)-3-羟基癸酸-1,3-¹³C,然后通过 RhlA 进一步加工成(R)-3-((R)-3-羟基烷酰氧基)烷酸(HAAs)。产物中单鼠李糖脂和二鼠李糖脂的比例取决于碳源的类型。rhlB 突变体可用于高效生产重要的生物表面活性剂 HAAs(例如,当在 60mM 辛酸上生长时可获得约 700mg/L 的 HAAs)。