Department of Statistics, University of Toronto, Toronto, Ontario, Canada.
Biostatistics. 2011 Apr;12(2):341-53. doi: 10.1093/biostatistics/kxq067. Epub 2010 Oct 27.
In functional linear models (FLMs), the relationship between the scalar response and the functional predictor process is often assumed to be identical for all subjects. Motivated by both practical and methodological considerations, we relax this assumption and propose a new class of functional regression models that allow the regression structure to vary for different groups of subjects. By projecting the predictor process onto its eigenspace, the new functional regression model is simplified to a framework that is similar to classical mixture regression models. This leads to the proposed approach named as functional mixture regression (FMR). The estimation of FMR can be readily carried out using existing software implemented for functional principal component analysis and mixture regression. The practical necessity and performance of FMR are illustrated through applications to a longevity analysis of female medflies and a human growth study. Theoretical investigations concerning the consistent estimation and prediction properties of FMR along with simulation experiments illustrating its empirical properties are presented in the supplementary material available at Biostatistics online. Corresponding results demonstrate that the proposed approach could potentially achieve substantial gains over traditional FLMs.
在函数线性模型(FLMs)中,通常假设标量响应和函数预测过程之间的关系对所有主体都是相同的。受实际和方法学考虑的驱动,我们放宽了这一假设,并提出了一类新的函数回归模型,允许不同组的主体的回归结构发生变化。通过将预测过程投影到其特征空间上,新的函数回归模型简化为类似于经典混合回归模型的框架。这导致了所提出的方法,称为函数混合回归(FMR)。使用为函数主成分分析和混合回归实现的现有软件,可以方便地进行 FMR 的估计。通过对雌性果蝇的长寿分析和人类生长研究的应用,说明了 FMR 的实际必要性和性能。在可用的统计在线补充材料中,介绍了关于 FMR 的一致估计和预测性质的理论研究以及说明其经验性质的模拟实验。相应的结果表明,所提出的方法有可能在传统的 FLMs 中取得实质性的收益。