Division of Biostatistics, University of California, Berkeley, CA 94110-7358, USA.
Stat Methods Med Res. 2012 Feb;21(1):31-54. doi: 10.1177/0962280210386207. Epub 2010 Oct 28.
The assumption of positivity or experimental treatment assignment requires that observed treatment levels vary within confounder strata. This article discusses the positivity assumption in the context of assessing model and parameter-specific identifiability of causal effects. Positivity violations occur when certain subgroups in a sample rarely or never receive some treatments of interest. The resulting sparsity in the data may increase bias with or without an increase in variance and can threaten valid inference. The parametric bootstrap is presented as a tool to assess the severity of such threats and its utility as a diagnostic is explored using simulated and real data. Several approaches for improving the identifiability of parameters in the presence of positivity violations are reviewed. Potential responses to data sparsity include restriction of the covariate adjustment set, use of an alternative projection function to define the target parameter within a marginal structural working model, restriction of the sample, and modification of the target intervention. All of these approaches can be understood as trading off proximity to the initial target of inference for identifiability; we advocate approaching this tradeoff systematically.
阳性假设或实验处理分配要求在混杂因素层内观察到的处理水平有所变化。本文在评估因果效应的模型和参数特定可识别性的背景下讨论阳性假设。当样本中的某些亚组很少或从未接受某些感兴趣的治疗时,就会发生阳性假设违反。数据的稀疏性可能会增加偏差,无论方差是否增加,并且可能会威胁到有效推断。参数自举被提出作为一种评估此类威胁严重程度的工具,并使用模拟和真实数据探索了其作为诊断工具的效用。回顾了几种在存在阳性假设违反时提高参数可识别性的方法。针对数据稀疏性的潜在应对措施包括限制协变量调整集、使用替代投影函数在边际结构工作模型内定义目标参数、限制样本和修改目标干预。所有这些方法都可以理解为在接近初始推断目标和可识别性之间进行权衡;我们主张系统地处理这种权衡。