Suppr超能文献

一种描述代表性不足人群的原则性方法。

: A Principled Approach to Characterizing the Underrepresented Population.

作者信息

Parikh Harsh, Ross Rachael K, Stuart Elizabeth, Rudolph Kara E

机构信息

Department of Biostatistics, Johns Hopkins University.

Department of Epidemiology, Columbia University.

出版信息

J Am Stat Assoc. 2025 Jun 24. doi: 10.1080/01621459.2025.2495319.

Abstract

Randomized controlled trials (RCTs) serve as the cornerstone for understanding causal effects, yet extending inferences to target populations presents challenges due to effect heterogeneity and underrepresentation. Our paper addresses the critical issue of identifying and characterizing underrepresented subgroups in RCTs, proposing a novel framework for refining target populations to improve generalizability. We introduce an optimization-based approach, Rashomon Set of Optimal Trees (ROOT), to characterize underrepresented groups. ROOT optimizes the target subpopulation distribution by minimizing the variance of the target average treatment effect estimate, ensuring more precise treatment effect estimations. Notably, ROOT generates interpretable characteristics of the underrepresented population, aiding researchers in effective communication. Our approach demonstrates improved precision and interpretability compared to alternatives, as illustrated with synthetic data experiments. We apply our methodology to extend inferences from the Starting Treatment with Agonist Replacement Therapies (START) trial - investigating the effectiveness of medication for opioid use disorder - to the real-world population represented by the Treatment Episode Dataset: Admissions (TEDS-A). By refining target populations using ROOT, our framework offers a systematic approach to enhance decision-making accuracy and inform future trials in diverse populations.

摘要

随机对照试验(RCTs)是理解因果效应的基石,但由于效应异质性和代表性不足,将推断扩展到目标人群面临挑战。我们的论文解决了在随机对照试验中识别和描述代表性不足亚组的关键问题,提出了一个用于优化目标人群以提高可推广性的新框架。我们引入了一种基于优化的方法,即最优树的罗生门集(ROOT),来描述代表性不足的群体。ROOT通过最小化目标平均治疗效果估计的方差来优化目标亚人群分布,确保更精确的治疗效果估计。值得注意的是,ROOT生成了代表性不足人群的可解释特征,有助于研究人员进行有效沟通。如合成数据实验所示,我们的方法与其他方法相比,展示了更高的精度和可解释性。我们将我们的方法应用于将激动剂替代疗法起始治疗(START)试验(研究药物治疗阿片类物质使用障碍的有效性)的推断扩展到治疗事件数据集:入院(TEDS-A)所代表的现实世界人群。通过使用ROOT优化目标人群,我们的框架提供了一种系统方法来提高决策准确性,并为不同人群的未来试验提供信息。

相似文献

3
Pharmacotherapy for anxiety and comorbid alcohol use disorders.焦虑症合并酒精使用障碍的药物治疗
Cochrane Database Syst Rev. 2015 Jan 20;1(1):CD007505. doi: 10.1002/14651858.CD007505.pub2.
5
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

本文引用的文献

4
Optimizing opioid use disorder treatment with naltrexone or buprenorphine.优化纳曲酮或丁丙诺啡治疗阿片类使用障碍。
Drug Alcohol Depend. 2021 Nov 1;228:109031. doi: 10.1016/j.drugalcdep.2021.109031. Epub 2021 Sep 11.
8
Robust estimation of encouragement-design intervention effects transported across sites.跨站点传递的鼓励设计干预效果的稳健估计。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1509-1525. doi: 10.1111/rssb.12213. Epub 2016 Oct 31.
9
Computer-aided assessment of the generalizability of clinical trial results.计算机辅助评估临床试验结果的可推广性。
Int J Med Inform. 2017 Mar;99:60-66. doi: 10.1016/j.ijmedinf.2016.12.008. Epub 2017 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验