University of Leiden, Institute of Biology of Leiden (IBL), Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
Université de Liège, Centre d'Ingénierie des Protéines, Institut de Chimie B6a, Sart-Tilman, B-4000 Liège, Belgium.
Microbiology (Reading). 2011 Feb;157(Pt 2):398-407. doi: 10.1099/mic.0.043075-0. Epub 2010 Oct 28.
The triggering of antibiotic production by various environmental stress molecules can be interpreted as bacteria's response to obtain increased fitness to putative danger, whereas the opposite situation - inhibition of antibiotic production - is more complicated to understand. Phenazines enable Pseudomonas species to eliminate competitors for rhizosphere colonization and are typical virulence factors used for model studies. In the present work, we have investigated the negative effect of subinhibitory concentrations of NaCl, fusaric acid and two antibiotics on quorum-sensing-controlled phenazine production by Pseudomonas chlororaphis. The selected stress factors inhibit phenazine synthesis despite sufficient cell density. Subsequently, we have identified connections between known genes of the phenazine-inducing cascade, including PsrA (Pseudomonas sigma regulator), RpoS (alternative sigma factor), Pip (phenazine inducing protein) and PhzI/PhzR (quorum-sensing system). Under all tested conditions, overexpression of Pip or PhzR restored phenazine production while overexpression of PsrA or RpoS did not. This forced restoration of phenazine production in strains overexpressing regulatory genes pip and phzR significantly impairs growth and stress resistance; this is particularly severe with pip overexpression. We suggest a novel physiological explanation for the inhibition of phenazine virulence factors in pseudomonas species responding to toxic compounds. We propose that switching off phenazine-1-carboxamide (PCN) synthesis by attenuating pip expression would favour processes required for survival. In our model, this 'decision' point for promoting PCN production or stress resistance is located downstream of rpoS and just above pip. However, a test with the stress factor rifampicin shows no significant inhibition of Pip production, suggesting that stress factors may also target other and so far unknown protagonists of the PCN signalling cascade.
各种环境应激分子触发抗生素产生可以被解释为细菌对潜在危险获得更高适应性的反应,而相反的情况——抗生素产生抑制——则更难以理解。吩嗪使假单胞菌能够消除根际定殖的竞争者,是用于模型研究的典型毒力因子。在本工作中,我们研究了亚抑菌浓度的 NaCl、蕈酸和两种抗生素对假单胞菌属叶绿素产群体感应控制的吩嗪产生的负效应。选择的应激因子尽管细胞密度充足,但仍抑制吩嗪合成。随后,我们鉴定了包括 PsrA(假单胞菌σ调节因子)、RpoS(替代σ因子)、Pip(吩嗪诱导蛋白)和 PhzI/PhzR(群体感应系统)在内的已知吩嗪诱导级联基因之间的联系。在所有测试条件下,Pip 或 PhzR 的过表达恢复了吩嗪的产生,而 PsrA 或 RpoS 的过表达则没有。在过表达调节基因 pip 和 phzR 的菌株中,这种强制恢复吩嗪的产生显著损害了生长和应激抗性;在过表达 pip 时更为严重。我们为假单胞菌属对有毒化合物做出反应时抑制吩嗪毒力因子提供了一种新的生理解释。我们提出,通过减弱 pip 的表达来关闭吩嗪-1-羧酰胺(PCN)合成将有利于生存所需的过程。在我们的模型中,这个促进 PCN 产生或应激抗性的“决策”点位于 rpoS 下游和 pip 上方。然而,用应激因子利福平进行的测试并未显示出对 Pip 产生的显著抑制,这表明应激因子可能还针对 PCN 信号级联的其他目前未知的主角。