Suppr超能文献

潜在激活方案下的灵活治愈率建模

Flexible Cure Rate Modeling Under Latent Activation Schemes.

作者信息

Cooner Freda, Banerjee Sudipto, Carlin Bradley P, Sinha Debajyoti

机构信息

Division of Biostatistics, Office of Surveillance and Biometrics, Center for Devices and Radiological Health, Food and Drug Administration.

出版信息

J Am Stat Assoc. 2007 Jun 1;102(478):560-572. doi: 10.1198/016214507000000112.

Abstract

With rapid improvements in medical treatment and health care, many datasets dealing with time to relapse or death now reveal a substantial portion of patients who are cured (i.e., who never experience the event). Extended survival models called cure rate models account for the probability of a subject being cured and can be broadly classified into the classical mixture models of Berkson and Gage (BG type) or the stochastic tumor models pioneered by Yakovlev and extended to a hierarchical framework by Chen, Ibrahim, and Sinha (YCIS type). Recent developments in Bayesian hierarchical cure models have evoked significant interest regarding relationships and preferences between these two classes of models. Our present work proposes a unifying class of cure rate models that facilitates flexible hierarchical model-building while including both existing cure model classes as special cases. This unifying class enables robust modeling by accounting for uncertainty in underlying mechanisms leading to cure. Issues such as regressing on the cure fraction and propriety of the associated posterior distributions under different modeling assumptions are also discussed. Finally, we offer a simulation study and also illustrate with two datasets (on melanoma and breast cancer) that reveal our framework's ability to distinguish among underlying mechanisms that lead to relapse and cure.

摘要

随着医疗和卫生保健的迅速改善,许多涉及复发时间或死亡时间的数据集现在显示,有很大一部分患者被治愈(即从未经历该事件)。称为治愈率模型的扩展生存模型考虑了受试者被治愈的概率,并且可以大致分为Berkson和Gage的经典混合模型(BG类型)或由Yakovlev开创并由Chen、Ibrahim和Sinha扩展到分层框架的随机肿瘤模型(YCIS类型)。贝叶斯分层治愈率模型的最新发展引起了人们对这两类模型之间关系和偏好的极大兴趣。我们目前的工作提出了一类统一的治愈率模型,该模型有助于灵活地构建分层模型,同时将现有的治愈率模型类作为特殊情况包含在内。这一统一的类别通过考虑导致治愈的潜在机制中的不确定性来实现稳健建模。还讨论了诸如治愈率回归以及在不同建模假设下相关后验分布的恰当性等问题。最后,我们进行了一项模拟研究,并通过两个数据集(关于黑色素瘤和乳腺癌)进行说明,这些数据集揭示了我们的框架区分导致复发和治愈的潜在机制的能力。

相似文献

1
Flexible Cure Rate Modeling Under Latent Activation Schemes.潜在激活方案下的灵活治愈率建模
J Am Stat Assoc. 2007 Jun 1;102(478):560-572. doi: 10.1198/016214507000000112.
5
On a reparameterization of a flexible family of cure models.对一类灵活的治愈模型的重参数化。
Stat Med. 2022 Sep 20;41(21):4091-4111. doi: 10.1002/sim.9498. Epub 2022 Jun 18.
6
Fitting parametric cure models in R using the packages cuRe and rstpm2.使用 cuRe 和 rstpm2 包在 R 中拟合参数化治愈模型。
Comput Methods Programs Biomed. 2022 Nov;226:107125. doi: 10.1016/j.cmpb.2022.107125. Epub 2022 Sep 13.
10
A transformation class for spatio-temporal survival data with a cure fraction.具有治愈比例的时空生存数据的变换类。
Stat Methods Med Res. 2016 Feb;25(1):167-87. doi: 10.1177/0962280212445658. Epub 2012 Apr 18.

引用本文的文献

9
Spatial Data Analysis.空间数据分析
Annu Rev Public Health. 2016;37:47-60. doi: 10.1146/annurev-publhealth-032315-021711. Epub 2016 Jan 20.

本文引用的文献

5
Estimation in a Cox proportional hazards cure model.Cox比例风险治愈模型中的估计
Biometrics. 2000 Mar;56(1):227-36. doi: 10.1111/j.0006-341x.2000.00227.x.
7
Improved models of tumour cure.改进的肿瘤治愈模型。
Int J Radiat Biol. 1996 Nov;70(5):539-53. doi: 10.1080/095530096144743.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验