Tian Xinyuan, Ciarleglio Maria, Cai Jiachen, Greene Erich J, Esserman Denise, Li Fan, Zhao Yize
Department of Biostatistics, Yale University, New Haven, CT, USA.
J R Stat Soc Ser C Appl Stat. 2024 Feb 1;73(3):598-620. doi: 10.1093/jrsssc/qlae003. eCollection 2024 Jun.
Recurrent events are common in clinical studies and are often subject to terminal events. In pragmatic trials, participants are often nested in clinics and can be susceptible or structurally unsusceptible to the recurrent events. We develop a Bayesian shared random effects model to accommodate this complex data structure. To achieve robustness, we consider the Dirichlet processes to model the residual of the accelerated failure time model for the survival process as well as the cluster-specific shared frailty distribution, along with an efficient sampling algorithm for posterior inference. Our method is applied to a recent cluster randomized trial on fall injury prevention.
复发事件在临床研究中很常见,并且常常受到终末事件的影响。在实用试验中,参与者通常嵌套在各个诊所中,可能对复发事件敏感或在结构上不敏感。我们开发了一种贝叶斯共享随机效应模型来适应这种复杂的数据结构。为了实现稳健性,我们考虑用狄利克雷过程对生存过程的加速失效时间模型的残差以及特定聚类的共享脆弱性分布进行建模,同时还考虑一种用于后验推断的高效抽样算法。我们的方法应用于最近一项关于预防跌倒损伤的聚类随机试验。