Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States.
J Am Chem Soc. 2010 Nov 24;132(46):16526-32. doi: 10.1021/ja106552p. Epub 2010 Oct 29.
Here we describe a novel caged form of the highly reactive bioeffector molecule, nitroxyl (HNO). Reacting the labile nitric oxide (NO)- and HNO-generating salt of structure iPrHN-N(O)═NO(-)Na(+) (1, IPA/NO) with BrCH(2)OAc produced a stable derivative of structure iPrHN-N(O)═NO-CH(2)OAc (2, AcOM-IPA/NO), which hydrolyzed an order of magnitude more slowly than 1 at pH 7.4 and 37 °C. Hydrolysis of 2 to generate HNO proceeded by at least two mechanisms. In the presence of esterase, straightforward dissociation to acetate, formaldehyde, and 1 was the dominant path. In the absence of enzyme, free 1 was not observed as an intermediate and the ratio of NO to HNO among the products approached zero. To account for this surprising result, we propose a mechanism in which base-induced removal of the N-H proton of 2 leads to acetyl group migration from oxygen to the neighboring nitrogen, followed by cleavage of the resulting rearrangement product to isopropanediazoate ion and the known HNO precursor, CH(3)-C(O)-NO. The trappable yield of HNO from 2 was significantly enhanced over 1 at physiological pH, in part because the slower rate of hydrolysis for 2 generated a correspondingly lower steady-state concentration of HNO, thus, minimizing self-consumption and enhancing trapping by biological targets such as metmyoglobin and glutathione. Consistent with the chemical trapping efficiency data, micromolar concentrations of prodrug 2 displayed significantly more potent sarcomere shortening effects relative to 1 on ventricular myocytes isolated from wild-type mouse hearts, suggesting that 2 may be a promising lead compound for the development of heart failure therapies.
在这里,我们描述了一种新型的笼状形式的高反应性生物效应分子,亚硝酰(HNO)。反应不稳定的一氧化氮(NO)和 HNO 生成盐的结构 iPrHN-N(O)═NO(-)Na(+)(1,IPA/NO)与 BrCH(2)OAc 产生结构 iPrHN-N(O)═NO-CH(2)OAc(2,AcOM-IPA/NO)的稳定衍生物,其在 pH 7.4 和 37°C 下比 1 水解慢一个数量级。2 水解生成 HNO 至少通过两种机制进行。在酯酶存在下,向醋酸盐、甲醛和 1 的直接离解是主要途径。在没有酶的情况下,没有观察到游离的 1 作为中间产物,并且产物中 NO 与 HNO 的比值接近零。为了解释这一令人惊讶的结果,我们提出了一种机制,其中碱诱导的 2 的 N-H 质子的去除导致乙酰基从氧迁移到相邻的氮,随后对得到的重排产物进行裂解,生成异丙烷二氮酸酯离子和已知的 HNO 前体,CH(3)-C(O)-NO。在生理 pH 下,2 从 HNO 的可捕获产率明显高于 1,部分原因是 2 水解的较慢速率生成了相应较低的 HNO 稳态浓度,从而最小化自消耗并增强生物靶标(如肌红蛋白和谷胱甘肽)的捕获。与化学捕获效率数据一致,与 1 相比,毫摩尔浓度的前药 2 在从野生型小鼠心脏分离的心室肌细胞上显示出更显著的肌节缩短效应,这表明 2 可能是开发心力衰竭治疗方法的有前途的先导化合物。