Suppr超能文献

有限变形下的各向异性水力渗透率

Anisotropic hydraulic permeability under finite deformation.

作者信息

Ateshian Gerard A, Weiss Jeffrey A

机构信息

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

出版信息

J Biomech Eng. 2010 Nov;132(11):111004. doi: 10.1115/1.4002588.

Abstract

The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semidefiniteness of the permeability or diffusivity tensor. Formulations are presented, which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and nonaffine reorientations of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations.

摘要

生物组织和细胞的结构组织通常会产生各向异性的传输特性。这些组织在正常功能下也可能经历大变形,从而可能进一步诱导各向异性。文献中缺乏用于在有限变形下制定各向异性传输特性本构关系的通用框架。本研究提出了一种基于对称张量值函数表示定理的方法,并提供了强制渗透率或扩散率张量为半正定的条件。给出了相关公式,这些公式描述了在参考状态下为正交各向异性、横向各向同性或各向同性的材料,以及大应变会导致更大各向异性的情况。针对承受轴向渗透的圆柱体的有限扭转,展示了固液混合物渗透率的应变诱导各向异性。结果表明,一般来说,扭转会产生螺旋流型,而不是在采用生物力学中常用的更特殊的、无条件各向同性的空间渗透率张量时所观察到的直线流型。根据材料函数的选择,本研究中提出的通用公式可以产生材料对称的首选方向随应变的仿射和非仿射重新定向。本研究通过为经历大变形的多孔可变形介质中各向异性应变相关传输特性提供指导方针和公式,满足了生物力学文献中的一项需求。

相似文献

1
Anisotropic hydraulic permeability under finite deformation.
J Biomech Eng. 2010 Nov;132(11):111004. doi: 10.1115/1.4002588.
4
Anisotropic hydraulic permeability in compressed articular cartilage.
J Biomech. 2006;39(1):131-7. doi: 10.1016/j.jbiomech.2004.10.015. Epub 2004 Dec 13.
5
A computational study of invariant I in a nearly incompressible transversely isotropic model for white matter.
J Biomech. 2017 May 24;57:146-151. doi: 10.1016/j.jbiomech.2017.03.025. Epub 2017 Apr 9.
6
Transversely isotropic material characterization of the human anterior longitudinal ligament.
J Mech Behav Biomed Mater. 2015 May;45:75-82. doi: 10.1016/j.jmbbm.2015.01.020. Epub 2015 Feb 7.
7
Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
Comput Methods Programs Biomed. 2020 May;188:105279. doi: 10.1016/j.cmpb.2019.105279. Epub 2019 Dec 14.
8
Effect of the anisotropic permeability in the frequency dependent properties of the superficial layer of articular cartilage.
Comput Methods Biomech Biomed Engin. 2018 Aug;21(11):635-644. doi: 10.1080/10255842.2018.1504214. Epub 2018 Nov 14.
9
A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
J Mech Behav Biomed Mater. 2014 Nov;39:48-60. doi: 10.1016/j.jmbbm.2014.06.016. Epub 2014 Jul 11.
10
Equivalence between short-time biphasic and incompressible elastic material responses.
J Biomech Eng. 2007 Jun;129(3):405-12. doi: 10.1115/1.2720918.

引用本文的文献

1
A quadriphasic mechanical model of the human dermis.
Biomech Model Mechanobiol. 2024 Aug;23(4):1121-1136. doi: 10.1007/s10237-024-01827-5. Epub 2024 Mar 15.
2
Finite Element Implementation of Biphasic-Fluid Structure Interactions in febio.
J Biomech Eng. 2021 Sep 1;143(9). doi: 10.1115/1.4050646.
3
A biphasic multilayer computational model of human skin.
Biomech Model Mechanobiol. 2021 Jun;20(3):969-982. doi: 10.1007/s10237-021-01424-w. Epub 2021 Feb 10.
4
Visco- and poroelastic contributions of the zona pellucida to the mechanical response of oocytes.
Biomech Model Mechanobiol. 2021 Apr;20(2):751-765. doi: 10.1007/s10237-020-01414-4. Epub 2021 Feb 3.
6
Diffusion tensor imaging profiles reveal specific neural tract distortion in normal pressure hydrocephalus.
PLoS One. 2017 Aug 17;12(8):e0181624. doi: 10.1371/journal.pone.0181624. eCollection 2017.
7
FEBio: History and Advances.
Annu Rev Biomed Eng. 2017 Jun 21;19:279-299. doi: 10.1146/annurev-bioeng-071516-044738.
9
Computational investigation of the time-dependent contact behaviour of the human tibiofemoral joint under body weight.
Proc Inst Mech Eng H. 2014 Nov;228(11):1193-207. doi: 10.1177/0954411914559737.
10
[Possibilities for the biomechanical characterization of cartilage: a brief update].
Orthopade. 2013 Apr;42(4):232-41. doi: 10.1007/s00132-013-2074-4.

本文引用的文献

1
An extended biphasic model for charged hydrated tissues with application to the intervertebral disc.
Biomech Model Mechanobiol. 2009 Jun;8(3):233-51. doi: 10.1007/s10237-008-0129-y. Epub 2008 Jul 27.
2
On the anisotropy and inhomogeneity of permeability in articular cartilage.
Biomech Model Mechanobiol. 2008 Oct;7(5):367-78. doi: 10.1007/s10237-007-0091-0. Epub 2007 Jul 6.
3
Equivalence between short-time biphasic and incompressible elastic material responses.
J Biomech Eng. 2007 Jun;129(3):405-12. doi: 10.1115/1.2720918.
4
On the theory of reactive mixtures for modeling biological growth.
Biomech Model Mechanobiol. 2007 Nov;6(6):423-45. doi: 10.1007/s10237-006-0070-x. Epub 2007 Jan 6.
5
Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach.
Spine (Phila Pa 1976). 2006 Nov 15;31(24):2783-9. doi: 10.1097/01.brs.0000245842.02717.1b.
7
Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching.
Biophys J. 2006 Jul 1;91(1):311-6. doi: 10.1529/biophysj.105.075283. Epub 2006 Apr 7.
9
Permeability of human medial collateral ligament in compression transverse to the collagen fiber direction.
J Biomech. 2006;39(2):276-83. doi: 10.1016/j.jbiomech.2004.11.016. Epub 2005 Jan 13.
10
A nonlinear biphasic viscohyperelastic model for articular cartilage.
J Biomech. 2006;39(16):2991-8. doi: 10.1016/j.jbiomech.2005.10.017. Epub 2005 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验