Suppr超能文献

有限变形下的各向异性水力渗透率

Anisotropic hydraulic permeability under finite deformation.

作者信息

Ateshian Gerard A, Weiss Jeffrey A

机构信息

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

出版信息

J Biomech Eng. 2010 Nov;132(11):111004. doi: 10.1115/1.4002588.

Abstract

The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semidefiniteness of the permeability or diffusivity tensor. Formulations are presented, which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and nonaffine reorientations of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations.

摘要

生物组织和细胞的结构组织通常会产生各向异性的传输特性。这些组织在正常功能下也可能经历大变形,从而可能进一步诱导各向异性。文献中缺乏用于在有限变形下制定各向异性传输特性本构关系的通用框架。本研究提出了一种基于对称张量值函数表示定理的方法,并提供了强制渗透率或扩散率张量为半正定的条件。给出了相关公式,这些公式描述了在参考状态下为正交各向异性、横向各向同性或各向同性的材料,以及大应变会导致更大各向异性的情况。针对承受轴向渗透的圆柱体的有限扭转,展示了固液混合物渗透率的应变诱导各向异性。结果表明,一般来说,扭转会产生螺旋流型,而不是在采用生物力学中常用的更特殊的、无条件各向同性的空间渗透率张量时所观察到的直线流型。根据材料函数的选择,本研究中提出的通用公式可以产生材料对称的首选方向随应变的仿射和非仿射重新定向。本研究通过为经历大变形的多孔可变形介质中各向异性应变相关传输特性提供指导方针和公式,满足了生物力学文献中的一项需求。

相似文献

4
Anisotropic hydraulic permeability in compressed articular cartilage.压缩关节软骨中的各向异性水力渗透率
J Biomech. 2006;39(1):131-7. doi: 10.1016/j.jbiomech.2004.10.015. Epub 2004 Dec 13.
6
Transversely isotropic material characterization of the human anterior longitudinal ligament.人体前纵韧带的横观各向同性材料特性
J Mech Behav Biomed Mater. 2015 May;45:75-82. doi: 10.1016/j.jmbbm.2015.01.020. Epub 2015 Feb 7.
9
A robust anisotropic hyperelastic formulation for the modelling of soft tissue.一种用于软组织建模的稳健各向异性超弹性公式。
J Mech Behav Biomed Mater. 2014 Nov;39:48-60. doi: 10.1016/j.jmbbm.2014.06.016. Epub 2014 Jul 11.

引用本文的文献

1
A quadriphasic mechanical model of the human dermis.一种四相机械模型的人类真皮。
Biomech Model Mechanobiol. 2024 Aug;23(4):1121-1136. doi: 10.1007/s10237-024-01827-5. Epub 2024 Mar 15.
3
A biphasic multilayer computational model of human skin.人体皮肤的双相多层计算模型。
Biomech Model Mechanobiol. 2021 Jun;20(3):969-982. doi: 10.1007/s10237-021-01424-w. Epub 2021 Feb 10.
7
FEBio: History and Advances.有限元生物力学软件(FEBio):历史与进展
Annu Rev Biomed Eng. 2017 Jun 21;19:279-299. doi: 10.1146/annurev-bioeng-071516-044738.
10
[Possibilities for the biomechanical characterization of cartilage: a brief update].
Orthopade. 2013 Apr;42(4):232-41. doi: 10.1007/s00132-013-2074-4.

本文引用的文献

2
On the anisotropy and inhomogeneity of permeability in articular cartilage.关于关节软骨渗透性的各向异性和非均质性
Biomech Model Mechanobiol. 2008 Oct;7(5):367-78. doi: 10.1007/s10237-007-0091-0. Epub 2007 Jul 6.
4
On the theory of reactive mixtures for modeling biological growth.关于用于模拟生物生长的反应性混合物理论。
Biomech Model Mechanobiol. 2007 Nov;6(6):423-45. doi: 10.1007/s10237-006-0070-x. Epub 2007 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验