ETH Zurich, Institute for Mechanical Systems, Zürich, Switzerland.
University and ETH Zurich, Institute for Biomedical Engineering, Zürich, Switzerland.
Biomech Model Mechanobiol. 2021 Jun;20(3):969-982. doi: 10.1007/s10237-021-01424-w. Epub 2021 Feb 10.
The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin's histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments yields mechanical parameters for each layer and predicts a stiff reticular dermis and successively softer papillary dermis, epidermis and hypodermis. Layer-specific analysis of simulations underlines the dominating role of the reticular dermis in tensile loading. Furthermore, it shows that the observed out-of-plane deflection in ex vivo tensile tests is a direct consequence of the layered structure of skin. In in vivo suction experiments, the softer upper layers strongly influence the mechanical response, whose dissipative part is determined by interstitial fluid redistribution within the tissue. Magnetic resonance imaging-based visualization of skin deformation in suction experiments confirms the deformation pattern predicted by the multilayer model, showing a consistent decrease in dermal thickness for large probe opening diameters.
本研究旨在探究人体皮肤的分层力学特性。受皮肤组织学启发,我们提出了一种两相模型,该模型区分了表皮、乳头层和网状真皮以及皮下组织。对离体拉伸和体内抽吸实验的反分析得出了各层的力学参数,并预测了坚硬的网状真皮和逐渐变软的乳头层、表皮和皮下组织。模拟的分层分析强调了网状真皮在拉伸加载中的主导作用。此外,它表明在离体拉伸实验中观察到的离面偏位是皮肤分层结构的直接结果。在体内抽吸实验中,较软的上层对力学响应有很大影响,其耗散部分由组织内间质液的再分配决定。基于磁共振成像的抽吸实验中皮肤变形的可视化证实了多层模型的预测,表明随着探头开口直径的增大,真皮厚度呈一致减小的趋势。