Suppr超能文献

基于伪氨基酸组成的蛋白质亚细胞定位预测新方法。

A novel method for predicting protein subcellular localization based on pseudo amino acid composition.

机构信息

School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

BMB Rep. 2010 Oct;43(10):670-6. doi: 10.5483/BMBRep.2010.43.10.670.

Abstract

In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.

摘要

本文首次提出了一种新方法 ELM-PCA,用于预测蛋白质亚细胞定位。首先,通过伪氨基酸组成(PseAAC)来表示蛋白质样本。其次,采用主成分分析(PCA)提取必要特征。最后,使用 Elman 递归神经网络(RNN)作为分类器来识别蛋白质序列。结果表明,所提出的方法是有效和实用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验