Suppr超能文献

小波分析用于近红外单光束光谱中葡萄糖的光谱背景去除。

Wavelet analysis used for spectral background removal in the determination of glucose from near-infrared single-beam spectra.

机构信息

Department of Chemistry & Optical Science and Technology Center, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Anal Chim Acta. 2010 Nov 29;681(1-2):63-70. doi: 10.1016/j.aca.2010.09.022. Epub 2010 Sep 22.

Abstract

Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than 6 months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum.

摘要

小波分析被开发为一种预处理工具,用于在构建多元校准模型之前,从近红外(近红外)单光束光谱中去除背景信息。研究了三个数据集,这些数据集是使用三个不同的近红外光谱仪收集的,涉及在含有丙氨酸、抗坏血酸、乳酸盐、三醋酸甘油酯和尿素的磷酸盐缓冲液模拟生物基质中测定生理水平的葡萄糖(1-30mM)。采用析因设计来优化特定的小波函数和应用的分解水平,以及与偏最小二乘校准模型相关的光谱范围和潜在变量数。使用校准光谱采集后获取的单独数据来研究计算模型的预测性能。该评估包括在超过 6 个月的时间内收集的一个数据集。与计算二阶导数光谱相比,小波分析预处理也得到了比较。在所评估的三个数据集上,小波分析被观察到产生了性能更好的校准模型,与基于二阶导数光谱或经过简单加性和乘法缩放校正预处理的光谱的模型相比,浓度预测的改进幅度约为 30%。该方法允许直接使用单光束光谱构建稳定的校准,从而消除了对单独背景或参考光谱采集的需求。

相似文献

本文引用的文献

7
Noninvasive glucose sensing.无创血糖传感
Anal Chem. 2005 Sep 1;77(17):5429-39. doi: 10.1021/ac050429e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验