Suppr超能文献

潜在类别模型的贝叶斯变量选择

Bayesian variable selection for latent class models.

作者信息

Ghosh Joyee, Herring Amy H, Siega-Riz Anna Maria

机构信息

Department of Statistics and Actuarial Science, The University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

Biometrics. 2011 Sep;67(3):917-25. doi: 10.1111/j.1541-0420.2010.01502.x. Epub 2010 Oct 29.

Abstract

In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.

摘要

在本文中,我们开发了一种潜在类别模型,其类别概率取决于个体特定的协变量。我们的一个主要目标是识别潜在类别的重要预测因子。我们考虑的方法能够在允许变量选择不确定性的同时估计潜在类别。我们提出了一种贝叶斯变量选择方法,并实现了一种随机搜索吉布斯采样器用于后验计算,以获得感兴趣量的模型平均估计值,如预测因子的边际包含概率。我们通过模拟研究以及将其应用于孕期体重增加的数据来说明我们的方法,在该数据中识别潜在体重增加类别的重要预测因子是有意义的。

相似文献

1
Bayesian variable selection for latent class models.
Biometrics. 2011 Sep;67(3):917-25. doi: 10.1111/j.1541-0420.2010.01502.x. Epub 2010 Oct 29.
2
Fixed and random effects selection in linear and logistic models.
Biometrics. 2007 Sep;63(3):690-8. doi: 10.1111/j.1541-0420.2007.00771.x. Epub 2007 Apr 2.
3
Two-level stochastic search variable selection in GLMs with missing predictors.
Int J Biostat. 2010;6(1):Article 33. doi: 10.2202/1557-4679.1173.
4
Stochastic search variable selection for identifying multiple quantitative trait loci.
Genetics. 2003 Jul;164(3):1129-38. doi: 10.1093/genetics/164.3.1129.
5
Bayesian latent factor regression for functional and longitudinal data.
Biometrics. 2012 Dec;68(4):1064-73. doi: 10.1111/j.1541-0420.2012.01788.x. Epub 2012 Sep 24.
6
Bayesian latent class models for capture-recapture in the presence of missing data.
Biom J. 2020 Jul;62(4):957-969. doi: 10.1002/bimj.201900111. Epub 2020 Jan 29.
7
Bayesian methods for the analysis of inequality constrained contingency tables.
Stat Methods Med Res. 2007 Apr;16(2):123-38. doi: 10.1177/0962280206071925.
8
A Bayesian latent variable mixture model for longitudinal fetal growth.
Biometrics. 2009 Dec;65(4):1233-42. doi: 10.1111/j.1541-0420.2009.01188.x.
9
A general class of pattern mixture models for nonignorable dropout with many possible dropout times.
Biometrics. 2008 Jun;64(2):538-45. doi: 10.1111/j.1541-0420.2007.00884.x. Epub 2007 Sep 26.
10
A Bayesian subgroup analysis using collections of ANOVA models.
Biom J. 2017 Jul;59(4):746-766. doi: 10.1002/bimj.201600064. Epub 2017 Mar 20.

引用本文的文献

1
Markov chain Monte Carlo: an introduction for epidemiologists.
Int J Epidemiol. 2013 Apr;42(2):627-34. doi: 10.1093/ije/dyt043.
2
Bayesian Latent Class Models in malaria diagnosis.
PLoS One. 2012;7(7):e40633. doi: 10.1371/journal.pone.0040633. Epub 2012 Jul 23.

本文引用的文献

1
Bayesian Inference on Changes in Response Densities over Predictor Clusters.
J Am Stat Assoc. 2008;103(484):1508-1517. doi: 10.1198/016214508000001039. Epub 2012 Jan 1.
2
Dietary energy density but not glycemic load is associated with gestational weight gain.
Am J Clin Nutr. 2008 Sep;88(3):693-9. doi: 10.1093/ajcn/88.3.693.
3
Outcomes of maternal weight gain.
Evid Rep Technol Assess (Full Rep). 2008 May(168):1-223.
4
Fixed and random effects selection in linear and logistic models.
Biometrics. 2007 Sep;63(3):690-8. doi: 10.1111/j.1541-0420.2007.00771.x. Epub 2007 Apr 2.
6
Bayesian multivariate logistic regression.
Biometrics. 2004 Sep;60(3):739-46. doi: 10.1111/j.0006-341X.2004.00224.x.
7
Determinants of participation in an epidemiological study of preterm delivery.
Paediatr Perinat Epidemiol. 1999 Jan;13(1):114-25. doi: 10.1046/j.1365-3016.1999.00156.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验