Mitra Robin, Dunson David
Southampton Statistical Sciences Research Institute.
Int J Biostat. 2010;6(1):Article 33. doi: 10.2202/1557-4679.1173.
Stochastic search variable selection (SSVS) algorithms provide an appealing and widely used approach for searching for good subsets of predictors while simultaneously estimating posterior model probabilities and model-averaged predictive distributions. This article proposes a two-level generalization of SSVS to account for missing predictors while accommodating uncertainty in the relationships between these predictors. Bayesian approaches for allowing predictors that are missing at random require a model on the joint distribution of the predictors. We show that predictive performance can be improved by allowing uncertainty in the specification of predictor relationships in this model. The methods are illustrated through simulation studies and analysis of an epidemiologic data set.
随机搜索变量选择(SSVS)算法为寻找预测变量的良好子集提供了一种有吸引力且广泛使用的方法,同时估计后验模型概率和模型平均预测分布。本文提出了SSVS的两级推广,以考虑缺失的预测变量,同时适应这些预测变量之间关系的不确定性。用于处理随机缺失预测变量的贝叶斯方法需要一个关于预测变量联合分布的模型。我们表明,通过在该模型中允许预测变量关系的规范存在不确定性,可以提高预测性能。通过模拟研究和对一个流行病学数据集的分析对这些方法进行了说明。