Suppr超能文献

广义线性模型中具有缺失预测变量的两级随机搜索变量选择

Two-level stochastic search variable selection in GLMs with missing predictors.

作者信息

Mitra Robin, Dunson David

机构信息

Southampton Statistical Sciences Research Institute.

出版信息

Int J Biostat. 2010;6(1):Article 33. doi: 10.2202/1557-4679.1173.

Abstract

Stochastic search variable selection (SSVS) algorithms provide an appealing and widely used approach for searching for good subsets of predictors while simultaneously estimating posterior model probabilities and model-averaged predictive distributions. This article proposes a two-level generalization of SSVS to account for missing predictors while accommodating uncertainty in the relationships between these predictors. Bayesian approaches for allowing predictors that are missing at random require a model on the joint distribution of the predictors. We show that predictive performance can be improved by allowing uncertainty in the specification of predictor relationships in this model. The methods are illustrated through simulation studies and analysis of an epidemiologic data set.

摘要

随机搜索变量选择(SSVS)算法为寻找预测变量的良好子集提供了一种有吸引力且广泛使用的方法,同时估计后验模型概率和模型平均预测分布。本文提出了SSVS的两级推广,以考虑缺失的预测变量,同时适应这些预测变量之间关系的不确定性。用于处理随机缺失预测变量的贝叶斯方法需要一个关于预测变量联合分布的模型。我们表明,通过在该模型中允许预测变量关系的规范存在不确定性,可以提高预测性能。通过模拟研究和对一个流行病学数据集的分析对这些方法进行了说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验