Suppr超能文献

参数与非参数统计检验:以住院日为例。

Parametric versus nonparametric statistical tests: the length of stay example.

机构信息

Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Acad Emerg Med. 2010 Oct;17(10):1113-21. doi: 10.1111/j.1553-2712.2010.00874.x.

Abstract

OBJECTIVES

This study examined selected effects of the proper use of nonparametric inferential statistical methods for analysis of nonnormally distributed data, as exemplified by emergency department length of stay (ED LOS). The hypothesis was that parametric methods have been used inappropriately for evaluation of ED LOS in most recent studies in leading emergency medicine (EM) journals. To illustrate why such a methodologic flaw should be avoided, a demonstration, using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), is presented. The demonstration shows how inappropriate analysis of ED LOS increases the probability of type II errors.

METHODS

Five major EM journals were reviewed, January 1, 2004, through December 31, 2007, and all studies with ED LOS as one of the reported outcomes were reviewed. The authors determined whether ED LOS was analyzed correctly by ascertaining whether nonparametric tests were used when indicated. An illustrative analysis of ED LOS was constructed using 2006 NHAMCS data, to demonstrate how inferential testing for statistical significance can deliver differing conclusions, depending on whether nonparametric methods are used when indicated.

RESULTS

Forty-nine articles were identified that studied ED LOS; 80% did not perform a test of normality on the ED LOS data. Data were not normally distributed in all 10 of the studies that did perform such tests. Overall, 43% failed to use appropriate nonparametric methods. Analysis of NHAMCS data confirmed that failure to use nonparametric bivariate tests results in type II statistical error and in multivariate models with less explanatory power (a smaller R²) value).

CONCLUSIONS

ED LOS, a key ED operational metric, is frequently analyzed incorrectly in the EM literature. Applying parametric statistical tests to such nonnormally distributed data reduces power and increases the probability of a type II error, which is the failure to find true associations. Appropriate use of nonparametric statistics should be a core component of statistical literacy because such use increases the validity of ED research and quality improvement projects.

摘要

目的

本研究通过考察非参数推断统计方法在分析非正态分布数据方面的应用,以急诊部门停留时间(ED LOS)为例,研究了正确使用这些方法的一些影响。假设是,在最近发表于领先的急诊医学(EM)期刊的大多数研究中,参数方法被不适当地用于评估 ED LOS。为了说明为什么应该避免这种方法上的缺陷,我们使用来自国家医院门诊医疗调查(NHAMCS)的数据进行了演示。演示表明,不恰当地分析 ED LOS 会增加犯第二类错误的概率。

方法

我们回顾了五本主要的 EM 期刊,时间范围为 2004 年 1 月 1 日至 2007 年 12 月 31 日,并对所有报告 ED LOS 为结果之一的研究进行了回顾。作者通过确定在需要时是否使用了非参数检验来确定 ED LOS 是否被正确分析。我们使用 2006 年 NHAMCS 数据构建了一个 ED LOS 的说明性分析,以演示在需要时使用非参数方法时,推断性检验对统计显著性的结论可能会有所不同。

结果

我们确定了 49 篇研究 ED LOS 的文章;其中 80%的文章没有对 ED LOS 数据进行正态性检验。在所有进行此类检验的 10 项研究中,数据都没有呈正态分布。总体而言,43%的文章没有使用适当的非参数方法。对 NHAMCS 数据的分析证实,不使用非参数双变量检验会导致第二类统计错误,并导致多元模型的解释能力(较小的 R²值)降低。

结论

ED LOS 是急诊部门的一个关键运营指标,在 EM 文献中经常被错误地分析。将参数统计检验应用于这种非正态分布的数据会降低功效,并增加犯第二类错误的概率,即未能发现真实关联的可能性。适当使用非参数统计应该是统计素养的核心组成部分,因为这种使用可以提高 ED 研究和质量改进项目的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验