Suppr超能文献

双变量比分析中的统计模型拟合。

Fitting statistical models in bivariate allometry.

机构信息

Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA.

出版信息

Biol Rev Camb Philos Soc. 2011 Aug;86(3):549-63. doi: 10.1111/j.1469-185X.2010.00160.x. Epub 2010 Oct 5.

Abstract

Several attempts have been made in recent years to formulate a general explanation for what appear to be recurring patterns of allometric variation in morphology, physiology, and ecology of both plants and animals (e.g. the Metabolic Theory of Ecology, the Allometric Cascade, the Metabolic-Level Boundaries hypothesis). However, published estimates for parameters in allometric equations often are inaccurate, owing to undetected bias introduced by the traditional method for fitting lines to empirical data. The traditional method entails fitting a straight line to logarithmic transformations of the original data and then back-transforming the resulting equation to the arithmetic scale. Because of fundamental changes in distributions attending transformation of predictor and response variables, the traditional practice may cause influential outliers to go undetected, and it may result in an underparameterized model being fitted to the data. Also, substantial bias may be introduced by the insidious rotational distortion that accompanies regression analyses performed on logarithms. Consequently, the aforementioned patterns of allometric variation may be illusions, and the theoretical explanations may be wide of the mark. Problems attending the traditional procedure can be largely avoided in future research simply by performing preliminary analyses on arithmetic values and by validating fitted equations in the arithmetic domain. The goal of most allometric research is to characterize relationships between biological variables and body size, and this is done most effectively with data expressed in the units of measurement. Back-transforming from a straight line fitted to logarithms is not a generally reliable way to estimate an allometric equation in the original scale.

摘要

近年来,人们曾多次尝试为动植物形态、生理学和生态学中似乎反复出现的异速变异模式提出一个综合解释(例如,生态代谢理论、异速级联、代谢水平边界假说)。然而,异速方程中参数的已发表估计值通常并不准确,这是由于传统拟合线到经验数据的方法引入了未被发现的偏差。传统方法需要将原始数据的对数变换拟合到一条直线上,然后将得到的方程反向转换到算术尺度。由于预测变量和响应变量转换时分布的根本变化,传统方法可能会导致有影响力的异常值未被发现,并且可能会导致对数据进行欠参数化的模型拟合。此外,伴随对对数进行回归分析的微妙旋转扭曲,可能会引入大量偏差。因此,上述异速变异模式可能是错觉,理论解释可能大错特错。在未来的研究中,只需对算术值进行初步分析,并在算术域中验证拟合方程,就可以在很大程度上避免传统程序带来的问题。大多数异速研究的目标是描述生物变量与体型之间的关系,而用测量单位表示的数据可以最有效地实现这一目标。从拟合到对数的直线进行反向转换,通常不是在原始尺度上估计异速方程的可靠方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验