Suppr超能文献

受限条件下水在分子粗糙表面的界面热力学。

Interfacial thermodynamics of confined water near molecularly rough surfaces.

机构信息

Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA.

出版信息

Faraday Discuss. 2010;146:341-52; discussion 367-93, 395-401. doi: 10.1039/b925913a.

Abstract

We study the effects of nanoscopic roughness on the interfacial free energy of water confined between solid surfaces. SPC/E water is simulated in confinement between two infinite planar surfaces that differ in their physical topology: one is smooth and the other one is physically rough on a sub-nanometre length scale. The two thermodynamic ensembles considered, with constant pressure either normal or parallel to the walls, correspond to different experimental conditions. We find that molecular-scale surface roughness significantly increases the solid-liquid interfacial free energy compared to the smooth surface. For our surfaces with a water-wall interaction energy minimum of -1.2 kcal mol(-1), we observe a transition from a hydrophilic surface to a hydrophobic surface at a roughness amplitude of about 3 angstroms and a wavelength of 11.6 angstroms, with the interfacial free energy changing sign from negative to positive. In agreement with previous studies of water near hydrophobic surfaces, we find an increase in the isothermal compressibility of water with increasing surface roughness. Interestingly, average measures of the water density and hydrogen-bond number do not contain distinct signatures of increased hydrophobicity. In contrast, a local analysis indicates transient dewetting of water in the valleys of the rough surface, together with a significant loss of hydrogen bonds, and a change in the dipole orientation toward the surface. These microscopic changes in the density, hydrogen bonding, and water orientation contribute to the large increase in the interfacial free energy, and the change from a hydrophilic to a hydrophobic character of the surface.

摘要

我们研究了纳米级粗糙度对固体表面之间受限水的界面自由能的影响。在两个具有不同物理拓扑的无限平面表面之间模拟了 SPC/E 水:一个是光滑的,另一个是在亚纳米长度尺度上具有物理粗糙度的。所考虑的两个热力学系综,压力要么垂直于壁面保持恒定,要么平行于壁面保持恒定,对应于不同的实验条件。我们发现,与光滑表面相比,分子级表面粗糙度显著增加了固-液界面自由能。对于我们的水-壁相互作用能最小值为-1.2 kcal/mol 的表面,我们在粗糙度幅度约为 3 埃且波长为 11.6 埃时观察到从亲水表面到疏水表面的转变,界面自由能从负变为正。与先前关于疏水表面附近水的研究一致,我们发现随着表面粗糙度的增加,水的等温压缩性增加。有趣的是,水密度和氢键数的平均测量值没有明显的增加疏水性的特征。相比之下,局部分析表明,粗糙表面的凹陷处的水会发生暂时的去湿,氢键大量损失,偶极子方向朝向表面发生变化。这些密度、氢键和水取向的微观变化有助于界面自由能的大幅增加,以及表面从亲水到疏水特性的转变。

相似文献

1
Interfacial thermodynamics of confined water near molecularly rough surfaces.
Faraday Discuss. 2010;146:341-52; discussion 367-93, 395-401. doi: 10.1039/b925913a.
4
Molecular dynamics simulation study of interaction between model rough hydrophobic surfaces.
J Phys Chem A. 2011 Jun 16;115(23):6059-67. doi: 10.1021/jp110608p. Epub 2011 Apr 15.
6
7
Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.
Phys Chem Chem Phys. 2015 Oct 21;17(39):26403-16. doi: 10.1039/c5cp03823e. Epub 2015 Sep 21.
8
Long-range effects of confinement on water structure.
J Phys Chem B. 2010 Apr 1;114(12):4246-51. doi: 10.1021/jp9086392.
9
Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051203. doi: 10.1103/PhysRevE.73.051203. Epub 2006 May 9.

引用本文的文献

2
Surprising Rigidity of Functionally Important Water Molecules Buried in the Lipid Headgroup Region.
J Am Chem Soc. 2022 May 4;144(17):7881-7888. doi: 10.1021/jacs.2c02145. Epub 2022 Apr 19.
3
Identifying hydrophobic protein patches to inform protein interaction interfaces.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2018234118.
4
Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13345-13350. doi: 10.1073/pnas.1700092114. Epub 2017 Nov 20.
5
On the role of water density fluctuations in the inhibition of a proton channel.
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):E8359-E8368. doi: 10.1073/pnas.1609964114. Epub 2016 Dec 12.
6
Channel morphology effect on water transport through graphene bilayers.
Sci Rep. 2016 Dec 8;6:38583. doi: 10.1038/srep38583.
7
Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays.
Langmuir. 2014 Aug 26;30(33):9891-904. doi: 10.1021/la404481t. Epub 2014 Jan 29.
10
Smoothing of the GB1 hairpin folding landscape by interfacial confinement.
Biophys J. 2012 Aug 8;103(3):596-600. doi: 10.1016/j.bpj.2012.07.005.

本文引用的文献

1
Simulations of water at the interface with hydrophilic self-assembled monolayers.
Biointerphases. 2008 Sep;3(3):FC13-22. doi: 10.1116/1.2977751.
2
Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15119-24. doi: 10.1073/pnas.0902778106. Epub 2009 Aug 25.
3
Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
Langmuir. 2009 Sep 15;25(18):10768-81. doi: 10.1021/la901314b.
4
Coarse-grained modeling of the interface between water and heterogeneous surfaces.
Faraday Discuss. 2009;141:209-20; discussion 309-46. doi: 10.1039/b805786a.
5
Static and dynamic correlations in water at hydrophobic interfaces.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20130-5. doi: 10.1073/pnas.0809029105. Epub 2008 Dec 11.
6
Chemistry. A curious antipathy for water.
Science. 2008 Dec 5;322(5907):1477-8. doi: 10.1126/science.1167219.
7
Dewetting and hydrophobic interaction in physical and biological systems.
Annu Rev Phys Chem. 2009;60:85-103. doi: 10.1146/annurev.physchem.58.032806.104445.
8
Hydrophobicity of protein surfaces: Separating geometry from chemistry.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2274-9. doi: 10.1073/pnas.0708088105. Epub 2008 Feb 11.
9
Water in nonpolar confinement: from nanotubes to proteins and beyond.
Annu Rev Phys Chem. 2008;59:713-40. doi: 10.1146/annurev.physchem.59.032607.093815.
10
Water revisited.
Science. 1980 Jul 25;209(4455):451-7. doi: 10.1126/science.209.4455.451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验