Suppr超能文献

蛋白质和纳米结构溶质的疏水性受地形和化学环境的控制。

Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context.

机构信息

Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104.

Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.

出版信息

Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13345-13350. doi: 10.1073/pnas.1700092114. Epub 2017 Nov 20.

Abstract

Hydrophobic interactions drive many important biomolecular self-assembly phenomena. However, characterizing hydrophobicity at the nanoscale has remained a challenge due to its nontrivial dependence on the chemistry and topography of biomolecular surfaces. Here we use molecular simulations coupled with enhanced sampling methods to systematically displace water molecules from the hydration shells of nanostructured solutes and calculate the free energetics of interfacial water density fluctuations, which quantify the extent of solute-water adhesion, and therefore solute hydrophobicity. In particular, we characterize the hydrophobicity of curved graphene sheets, self-assembled monolayers (SAMs) with chemical patterns, and mutants of the protein hydrophobin-II. We find that water density fluctuations are enhanced near concave nonpolar surfaces compared with those near flat or convex ones, suggesting that concave surfaces are more hydrophobic. We also find that patterned SAMs and protein mutants, having the same number of nonpolar and polar sites but different geometrical arrangements, can display significantly different strengths of adhesion with water. Specifically, hydroxyl groups reduce the hydrophobicity of methyl-terminated SAMs most effectively not when they are clustered together but when they are separated by one methyl group. Hydrophobin-II mutants show that a charged amino acid reduces the hydrophobicity of a large nonpolar patch when placed at its center, rather than at its edge. Our results highlight the power of water density fluctuations-based measures to characterize the hydrophobicity of nanoscale surfaces and caution against the use of additive approximations, such as the commonly used surface area models or hydropathy scales for characterizing biomolecular hydrophobicity and the associated driving forces of assembly.

摘要

疏水相互作用驱动着许多重要的生物分子自组装现象。然而,由于其对生物分子表面化学和形貌的复杂依赖性,纳米尺度上的疏水性特征一直是一个挑战。在这里,我们使用分子模拟结合增强采样方法,从纳米结构溶质的水合壳中系统地置换水分子,并计算界面水分子密度涨落的自由能,该自由能量化了溶质-水黏附的程度,因此也量化了溶质的疏水性。特别是,我们对弯曲的石墨烯片、具有化学图案的自组装单分子层(SAMs)以及蛋白质疏蛋白-II 的突变体的疏水性进行了表征。我们发现,与平面或凸面相比,在凹面非极性表面附近水分子密度涨落增强,表明凹面更疏水。我们还发现,具有相同数量的非极性和极性位点但几何排列不同的图案化 SAMs 和蛋白质突变体与水的黏附强度可以有显著差异。具体来说,羟基最有效地降低了末端为甲基的 SAM 的疏水性,而不是当它们聚集在一起时,而是当它们被一个甲基基团隔开时。疏蛋白-II 突变体表明,当带电荷的氨基酸位于大的非极性补丁的中心而不是边缘时,会降低其疏水性。我们的结果突出了基于水分子密度涨落的测量来表征纳米尺度表面疏水性的能力,并提醒人们避免使用加和近似方法,如常用的表面积模型或疏水性尺度来表征生物分子疏水性及其相关的组装驱动力。

相似文献

1
Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13345-13350. doi: 10.1073/pnas.1700092114. Epub 2017 Nov 20.
2
Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins.
Faraday Discuss. 2010;146:353-65; discussion 367-93, 395-401. doi: 10.1039/b927019a.
3
Hydrophobicity of proteins and interfaces: insights from density fluctuations.
Annu Rev Chem Biomol Eng. 2011;2:147-71. doi: 10.1146/annurev-chembioeng-061010-114156.
4
Structural features of interfacial water predict the hydrophobicity of chemically heterogeneous surfaces.
Chem Sci. 2023 Jan 3;14(5):1308-1319. doi: 10.1039/d2sc02856e. eCollection 2023 Feb 1.
5
Efficient method to characterize the context-dependent hydrophobicity of proteins.
J Phys Chem B. 2014 Feb 13;118(6):1564-73. doi: 10.1021/jp4081977. Epub 2014 Jan 29.
6
Comparative Study of Water-Mediated Interactions between Hydrophilic and Hydrophobic Nanoscale Surfaces.
J Phys Chem B. 2019 Dec 19;123(50):10814-10824. doi: 10.1021/acs.jpcb.9b08725. Epub 2019 Dec 6.
8
Identifying hydrophobic protein patches to inform protein interaction interfaces.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2018234118.
9
Sparse Sampling of Water Density Fluctuations in Interfacial Environments.
J Chem Theory Comput. 2016 Feb 9;12(2):706-13. doi: 10.1021/acs.jctc.5b01037. Epub 2016 Jan 26.

引用本文的文献

2
Terahertz calorimetry spotlights the role of water in biological processes.
Nat Rev Chem. 2025 May 9. doi: 10.1038/s41570-025-00712-8.
3
Tuning biological processes co-solutes: from single proteins to protein condensates - the case of α-elastin condensation.
Chem Sci. 2025 Feb 24;16(14):5897-5906. doi: 10.1039/d4sc07335e. eCollection 2025 Apr 2.
4
Probing the structure of water in individual living cells.
Nat Commun. 2024 Jun 20;15(1):5271. doi: 10.1038/s41467-024-49404-9.
5
Macromolecular condensation buffers intracellular water potential.
Nature. 2023 Nov;623(7988):842-852. doi: 10.1038/s41586-023-06626-z. Epub 2023 Oct 18.
6
Solvation thermodynamics from cavity shapes of amino acids.
PNAS Nexus. 2023 Jul 26;2(8):pgad239. doi: 10.1093/pnasnexus/pgad239. eCollection 2023 Aug.
7
An Affordable Topography-Based Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) Scale.
J Chem Theory Comput. 2024 Feb 27;20(4):1656-1672. doi: 10.1021/acs.jctc.3c00106. Epub 2023 Apr 5.
8
Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins.
Biomacromolecules. 2023 Mar 13;24(3):1244-1257. doi: 10.1021/acs.biomac.2c01309. Epub 2023 Feb 9.
9
Structural features of interfacial water predict the hydrophobicity of chemically heterogeneous surfaces.
Chem Sci. 2023 Jan 3;14(5):1308-1319. doi: 10.1039/d2sc02856e. eCollection 2023 Feb 1.
10
Inverse Design of Pore Wall Chemistry To Control Solute Transport and Selectivity.
ACS Cent Sci. 2022 Dec 28;8(12):1609-1617. doi: 10.1021/acscentsci.2c01011. Epub 2022 Nov 30.

本文引用的文献

2
Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2548-E2555. doi: 10.1073/pnas.1620335114. Epub 2017 Mar 13.
3
Universal Repulsive Contribution to the Solvent-Induced Interaction Between Sizable, Curved Hydrophobes.
J Phys Chem Lett. 2016 Aug 18;7(16):3158-63. doi: 10.1021/acs.jpclett.6b01442. Epub 2016 Aug 3.
4
Molecular Shape and the Hydrophobic Effect.
Annu Rev Phys Chem. 2016 May 27;67:307-29. doi: 10.1146/annurev-physchem-040215-112316.
5
Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces.
J Am Chem Soc. 2015 Aug 26;137(33):10618-23. doi: 10.1021/jacs.5b05242. Epub 2015 Aug 14.
6
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.
Expert Opin Drug Discov. 2015 May;10(5):449-61. doi: 10.1517/17460441.2015.1032936. Epub 2015 Apr 2.
7
Modulation of hydrophobic interactions by proximally immobilized ions.
Nature. 2015 Jan 15;517(7534):347-50. doi: 10.1038/nature14018.
8
Physical chemistry: Hydrophobic interactions in context.
Nature. 2015 Jan 15;517(7534):277-9. doi: 10.1038/517277a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验