Suppr超能文献

鉴定疏水性蛋白斑块以了解蛋白相互作用界面。

Identifying hydrophobic protein patches to inform protein interaction interfaces.

机构信息

Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104.

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2018234118.

Abstract

Interactions between proteins lie at the heart of numerous biological processes and are essential for the proper functioning of the cell. Although the importance of hydrophobic residues in driving protein interactions is universally accepted, a characterization of protein hydrophobicity, which informs its interactions, has remained elusive. The challenge lies in capturing the collective response of the protein hydration waters to the nanoscale chemical and topographical protein patterns, which determine protein hydrophobicity. To address this challenge, here, we employ specialized molecular simulations wherein water molecules are systematically displaced from the protein hydration shell; by identifying protein regions that relinquish their waters more readily than others, we are then able to uncover the most hydrophobic protein patches. Surprisingly, such patches contain a large fraction of polar/charged atoms and have chemical compositions that are similar to the more hydrophilic protein patches. Importantly, we also find a striking correspondence between the most hydrophobic protein patches and regions that mediate protein interactions. Our work thus establishes a computational framework for characterizing the emergent hydrophobicity of amphiphilic solutes, such as proteins, which display nanoscale heterogeneity, and for uncovering their interaction interfaces.

摘要

蛋白质之间的相互作用是许多生物过程的核心,对细胞的正常功能至关重要。尽管疏水残基在驱动蛋白质相互作用方面的重要性已被普遍接受,但对蛋白质疏水性的描述,即告知其相互作用的特征,仍然难以捉摸。挑战在于捕捉蛋白质水化水对决定蛋白质疏水性的纳米级化学和地形蛋白质图案的集体响应。为了解决这一挑战,我们在这里采用了专门的分子模拟,其中水分子被系统地从蛋白质水化壳中置换出来;通过确定比其他区域更容易释放其水分子的蛋白质区域,我们能够揭示最疏水的蛋白质斑块。令人惊讶的是,这些斑块包含大量的极性/带电原子,并且具有与更亲水的蛋白质斑块相似的化学成分。重要的是,我们还发现最疏水的蛋白质斑块与介导蛋白质相互作用的区域之间存在惊人的对应关系。因此,我们的工作为表征具有纳米级异质性的两亲性溶质(如蛋白质)的新兴疏水性以及揭示其相互作用界面建立了一个计算框架。

相似文献

1
Identifying hydrophobic protein patches to inform protein interaction interfaces.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2018234118.
2
Protein Hydration Waters Are Susceptible to Unfavorable Perturbations.
J Am Chem Soc. 2019 Feb 6;141(5):2080-2086. doi: 10.1021/jacs.8b11448. Epub 2019 Jan 22.
3
Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13345-13350. doi: 10.1073/pnas.1700092114. Epub 2017 Nov 20.
5
Efficient method to characterize the context-dependent hydrophobicity of proteins.
J Phys Chem B. 2014 Feb 13;118(6):1564-73. doi: 10.1021/jp4081977. Epub 2014 Jan 29.
6
Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15119-24. doi: 10.1073/pnas.0902778106. Epub 2009 Aug 25.
7
Learning the relationship between nanoscale chemical patterning and hydrophobicity.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2200018119. doi: 10.1073/pnas.2200018119. Epub 2022 Nov 21.
9
Hydrophobicity of proteins and interfaces: insights from density fluctuations.
Annu Rev Chem Biomol Eng. 2011;2:147-71. doi: 10.1146/annurev-chembioeng-061010-114156.
10
A simple atomic-level hydrophobicity scale reveals protein interfacial structure.
J Mol Biol. 2014 Jan 23;426(2):484-98. doi: 10.1016/j.jmb.2013.09.039. Epub 2013 Oct 10.

引用本文的文献

1
Hydration free energy is a significant predictor of globular protein incorporation into condensates.
bioRxiv. 2025 Jul 7:2025.07.03.663089. doi: 10.1101/2025.07.03.663089.
2
How allosteric mutations control ligand binding in Lipocalin protein: odorant binding protein as a test case.
Cell Mol Life Sci. 2025 Jun 23;82(1):250. doi: 10.1007/s00018-025-05777-8.
3
Terahertz calorimetry spotlights the role of water in biological processes.
Nat Rev Chem. 2025 May 9. doi: 10.1038/s41570-025-00712-8.
6
Tuning biological processes co-solutes: from single proteins to protein condensates - the case of α-elastin condensation.
Chem Sci. 2025 Feb 24;16(14):5897-5906. doi: 10.1039/d4sc07335e. eCollection 2025 Apr 2.
7
PROPERMAB: an integrative framework for prediction of antibody developability using machine learning.
MAbs. 2025 Dec;17(1):2474521. doi: 10.1080/19420862.2025.2474521. Epub 2025 Mar 5.
8
Extending the PARCH Scale: Assessing Hydropathy of Proteins across Multiple Water Models.
J Chem Inf Model. 2025 Mar 24;65(6):2999-3009. doi: 10.1021/acs.jcim.4c02415. Epub 2025 Mar 4.
9
Compact Assessment of Molecular Surface Complementarities Enhances Neural Network-Aided Prediction of Key Binding Residues.
J Chem Inf Model. 2025 Mar 10;65(5):2695-2709. doi: 10.1021/acs.jcim.4c02286. Epub 2025 Feb 21.
10
Prediction of antibody-antigen interaction based on backbone aware with invariant point attention.
BMC Bioinformatics. 2024 Nov 6;25(1):348. doi: 10.1186/s12859-024-05961-w.

本文引用的文献

1
Exploring the Free-Energy Landscape and Thermodynamics of Protein-Protein Association.
Biophys J. 2020 Sep 15;119(6):1226-1238. doi: 10.1016/j.bpj.2020.08.005. Epub 2020 Aug 12.
2
Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution.
Nat Chem. 2020 Jul;12(7):589-594. doi: 10.1038/s41557-020-0458-8. Epub 2020 May 18.
3
Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces.
Annu Rev Chem Biomol Eng. 2020 Jun 7;11:523-557. doi: 10.1146/annurev-chembioeng-120919-114657. Epub 2020 Mar 13.
4
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning.
Nat Methods. 2020 Feb;17(2):184-192. doi: 10.1038/s41592-019-0666-6. Epub 2019 Dec 9.
5
Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces.
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25516-25523. doi: 10.1073/pnas.1916180116. Epub 2019 Dec 2.
6
Predicting Protein Dimer Structures Using MELD × MD.
J Chem Theory Comput. 2019 May 14;15(5):3381-3389. doi: 10.1021/acs.jctc.8b01208. Epub 2019 Apr 5.
7
Characterizing Solvent Density Fluctuations in Dynamical Observation Volumes.
J Phys Chem B. 2019 Feb 21;123(7):1650-1661. doi: 10.1021/acs.jpcb.8b11423. Epub 2019 Feb 12.
8
Protein Hydration Waters Are Susceptible to Unfavorable Perturbations.
J Am Chem Soc. 2019 Feb 6;141(5):2080-2086. doi: 10.1021/jacs.8b11448. Epub 2019 Jan 22.
9
Can Arginine Inhibit Insulin Aggregation? A Combined Protein Crystallography, Capillary Electrophoresis, and Molecular Simulation Study.
J Phys Chem B. 2018 Nov 8;122(44):10069-10076. doi: 10.1021/acs.jpcb.8b06557. Epub 2018 Sep 10.
10
Computational discovery of chemically patterned surfaces that effect unique hydration water dynamics.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8093-8098. doi: 10.1073/pnas.1807208115. Epub 2018 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验