Suppr超能文献

探究碳纳米管/绿茶复合材料的化学敏感性。

Exploring the chemical sensitivity of a carbon nanotube/green tea composite.

机构信息

Department of Chemistry, University of Pittsburgh and the National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15260, United States.

出版信息

ACS Nano. 2010 Nov 23;4(11):6854-62. doi: 10.1021/nn100988t. Epub 2010 Nov 2.

Abstract

Single-walled carbon nanotubes (SWNTs) possess unique electronic and physical properties, which make them very attractive for a wide range of applications. In particular, SWNTs and their composites have shown a great potential for chemical and biological sensing. Green tea, or more specifically its main antioxidant component, epigallocatechin gallate (EGCG), has been found to disperse SWNTs in water. However, the chemical sensitivity of this SWNT/green tea (SWNT/EGCG) composite remained unexplored. With EGCG present, this SWNT composite should have strong antioxidant properties and thus respond to reactive oxygen species (ROS). Here we report on fabrication and characterization of SWNT/EGCG thin films and the measurement of their relative conductance as a function of H(2)O(2) concentrations. We further investigated the sensing mechanism by Fourier transform infrared (FTIR) spectroscopy and field-effect transistor measurements (FET). We propose here that the response to H(2)O(2) arises from the oxidation of EGCG in the composite. These findings suggest that SWNT/green tea composite has a great potential for developing simple resistivity-based sensors.

摘要

单壁碳纳米管(SWNTs)具有独特的电子和物理性质,这使得它们在广泛的应用中非常有吸引力。特别是,SWNTs 及其复合材料在化学和生物传感方面显示出巨大的潜力。绿茶,或者更具体地说,其主要抗氧化成分表没食子儿茶素没食子酸酯(EGCG),已被发现可以在水中分散 SWNTs。然而,这种 SWNT/绿茶(SWNT/EGCG)复合材料的化学敏感性仍未得到探索。由于 EGCG 的存在,这种 SWNT 复合材料应该具有很强的抗氧化性能,因此可以响应活性氧物种(ROS)。在这里,我们报告了 SWNT/EGCG 薄膜的制备和表征,并测量了它们的相对电导率随 H2O2 浓度的变化。我们还通过傅里叶变换红外(FTIR)光谱和场效应晶体管测量(FET)进一步研究了传感机制。我们在这里提出,对 H2O2 的响应来自于复合材料中 EGCG 的氧化。这些发现表明,SWNT/绿茶复合材料在开发简单的基于电阻的传感器方面具有巨大的潜力。

相似文献

1
Exploring the chemical sensitivity of a carbon nanotube/green tea composite.
ACS Nano. 2010 Nov 23;4(11):6854-62. doi: 10.1021/nn100988t. Epub 2010 Nov 2.
3
Differences in the response of the near-infrared absorbance spectra of single-walled carbon nanotubes; Effects of chirality and wrapping polymers.
Colloids Surf B Biointerfaces. 2018 Dec 1;172:684-689. doi: 10.1016/j.colsurfb.2018.09.026. Epub 2018 Sep 13.
4
Efficient solubilization of single-walled carbon nanotubes using tea solutions.
J Nanosci Nanotechnol. 2010 Jun;10(6):3815-21. doi: 10.1166/jnn.2010.2014.
5
Role of hydrogen peroxide in bactericidal action of catechin.
Biol Pharm Bull. 2004 Mar;27(3):277-81. doi: 10.1248/bpb.27.277.
6
Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
ACS Appl Mater Interfaces. 2015 Jan 14;7(1):584-92. doi: 10.1021/am506758u. Epub 2014 Dec 31.
8
Sensitive determination of (-)-epigallocatechin gallate in tea infusion using a novel ionic liquid carbon paste electrode.
J Agric Food Chem. 2012 Jun 27;60(25):6333-40. doi: 10.1021/jf300498e. Epub 2012 Jun 15.
9
10
Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
J Nanosci Nanotechnol. 2004 Sep;4(7):691-703. doi: 10.1166/jnn.2004.116.

引用本文的文献

3
Solid State Sensors for Hydrogen Peroxide Detection.
Biosensors (Basel). 2020 Dec 25;11(1):9. doi: 10.3390/bios11010009.
5
Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization.
ACS Nano. 2014 Feb 25;8(2):1419-28. doi: 10.1021/nn405240g. Epub 2014 Jan 10.

本文引用的文献

2
A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.
Cell Biochem Biophys. 2009;53(2):75-100. doi: 10.1007/s12013-009-9043-x.
3
Carbon nanotube gas and vapor sensors.
Angew Chem Int Ed Engl. 2008;47(35):6550-70. doi: 10.1002/anie.200704488.
4
Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents.
J Am Chem Soc. 2008 Apr 23;130(16):5392-3. doi: 10.1021/ja710795k. Epub 2008 Mar 29.
5
Identifying the mechanism of biosensing with carbon nanotube transistors.
Nano Lett. 2008 Feb;8(2):591-5. doi: 10.1021/nl072996i. Epub 2007 Dec 28.
6
The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III).
J Inorg Biochem. 2007 Apr;101(4):585-93. doi: 10.1016/j.jinorgbio.2006.12.001. Epub 2006 Dec 12.
7
Biosensors based on carbon nanotubes.
Anal Bioanal Chem. 2006 Jun;385(3):452-68. doi: 10.1007/s00216-006-0314-8. Epub 2006 Mar 28.
8
Protein-assisted solubilization of single-walled carbon nanotubes.
Langmuir. 2006 Feb 14;22(4):1392-5. doi: 10.1021/la0528201.
9
Applications of carbon nanotubes in drug delivery.
Curr Opin Chem Biol. 2005 Dec;9(6):674-9. doi: 10.1016/j.cbpa.2005.10.005. Epub 2005 Oct 17.
10
Anticancer activity of grape and grape skin extracts alone and combined with green tea infusions.
Cancer Lett. 2006 Jul 18;238(2):202-9. doi: 10.1016/j.canlet.2005.07.011. Epub 2005 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验