Suppr超能文献

骨细胞在液流作用下的准 3D 细胞骨架动力学。

Quasi-3D cytoskeletal dynamics of osteocytes under fluid flow.

机构信息

Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA.

出版信息

Biophys J. 2010 Nov 3;99(9):2812-20. doi: 10.1016/j.bpj.2010.08.064.

Abstract

Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.

摘要

成骨细胞通过激活各种生化途径对动态流体剪切加载作出反应,介导骨形成和吸收的动态过程。细胞整体变形和细胞骨架的区域变形可能能够直接调节这个过程。通过传统显微镜技术对细胞变形进行成像的尝试受到时空分辨率低的限制。在这项研究中,我们开发了一种准三维显微镜技术,使我们能够以高时间分辨率同时可视化一个骨细胞的传统底视图轮廓和侧视图轮廓。对质膜和细胞内肌动蛋白或微管 (MT) 细胞骨架网络的定量分析提供了随时间推移它们变形的特征。尽管在流动下没有观察到整个细胞的体积膨胀,但在所有测量的应变分量中,肌动蛋白和 MT 网络都主要经历拉伸应变。在肌动蛋白网络中观察到正常应变场的区域异质性,尤其是在前沿到流动,但在 MT 网络中没有观察到。相比之下,侧视图剪切应变在两个网络中表现出相似的亚细胞分布模式。破坏 MT 网络导致肌动蛋白正常应变减小,而肌动蛋白破坏对 MT 网络应变几乎没有影响,突出了骨细胞中网络的力学相互作用。

相似文献

1
Quasi-3D cytoskeletal dynamics of osteocytes under fluid flow.
Biophys J. 2010 Nov 3;99(9):2812-20. doi: 10.1016/j.bpj.2010.08.064.
2
Simultaneous tracking of 3D actin and microtubule strains in individual MLO-Y4 osteocytes under oscillatory flow.
Biochem Biophys Res Commun. 2013 Feb 22;431(4):718-23. doi: 10.1016/j.bbrc.2013.01.052. Epub 2013 Jan 23.
5
Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations.
Arch Biochem Biophys. 2015 Aug 1;579:55-61. doi: 10.1016/j.abb.2015.05.012. Epub 2015 Jun 1.
6
Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes.
J Bone Miner Metab. 2007;25(3):151-8. doi: 10.1007/s00774-006-0745-5. Epub 2007 Apr 20.
9
Mechanotransduction and strain amplification in osteocyte cell processes.
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16689-94. doi: 10.1073/pnas.0407429101. Epub 2004 Nov 11.
10
Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections.
J Bone Miner Res. 1998 Oct;13(10):1555-68. doi: 10.1359/jbmr.1998.13.10.1555.

引用本文的文献

1
Visually precise, low-damage, single-cell spatial manipulation with single-pixel resolution.
Chem Sci. 2021 Feb 2;12(11):4111-4118. doi: 10.1039/d0sc05534d.
2
Displacement and strain mapping for osteocytes under fluid shear stress using digital holographic microscopy and digital image correlation.
Biomed Opt Express. 2021 Mar 9;12(4):1922-1933. doi: 10.1364/BOE.418418. eCollection 2021 Apr 1.
3
Bone fracture healing: perspectives according to molecular basis.
J Bone Miner Metab. 2021 May;39(3):311-331. doi: 10.1007/s00774-020-01168-0. Epub 2020 Nov 5.
4
Mechanically induced Ca oscillations in osteocytes release extracellular vesicles and enhance bone formation.
Bone Res. 2018 Mar 19;6:6. doi: 10.1038/s41413-018-0007-x. eCollection 2018.
5
Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies.
Sci Rep. 2018 Jan 24;8(1):1504. doi: 10.1038/s41598-018-19791-3.
8
Planar cell polarity aligns osteoblast division in response to substrate strain.
J Bone Miner Res. 2015 Mar;30(3):423-35. doi: 10.1002/jbmr.2377.
9
A noninvasive approach to determine viscoelastic properties of an individual adherent cell under fluid flow.
J Biomech. 2014 Apr 11;47(6):1537-41. doi: 10.1016/j.jbiomech.2014.01.056. Epub 2014 Feb 14.
10
Simultaneous tracking of 3D actin and microtubule strains in individual MLO-Y4 osteocytes under oscillatory flow.
Biochem Biophys Res Commun. 2013 Feb 22;431(4):718-23. doi: 10.1016/j.bbrc.2013.01.052. Epub 2013 Jan 23.

本文引用的文献

1
Direct measurement of shear strain in adherent vascular endothelial cells exposed to fluid shear stress.
Biochem Biophys Res Commun. 2010 Mar 26;394(1):94-9. doi: 10.1016/j.bbrc.2010.02.115. Epub 2010 Feb 20.
2
Mapping the cytoskeletal prestress.
Am J Physiol Cell Physiol. 2010 May;298(5):C1245-52. doi: 10.1152/ajpcell.00417.2009. Epub 2010 Feb 17.
3
Cell mechanics and the cytoskeleton.
Nature. 2010 Jan 28;463(7280):485-92. doi: 10.1038/nature08908.
4
Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells.
Biophys J. 2009 Oct 7;97(7):1873-82. doi: 10.1016/j.bpj.2009.07.050.
5
Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body.
J Biomech. 2009 Aug 25;42(12):1989-95. doi: 10.1016/j.jbiomech.2009.04.034. Epub 2009 Jul 22.
6
Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells.
Nat Methods. 2009 May;6(5):383-7. doi: 10.1038/nmeth.1320. Epub 2009 Apr 12.
7
Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?
Bone. 2008 Sep;43(3):452-8. doi: 10.1016/j.bone.2008.01.030. Epub 2008 Feb 21.
8
Nonequilibrium microtubule fluctuations in a model cytoskeleton.
Phys Rev Lett. 2008 Mar 21;100(11):118104. doi: 10.1103/PhysRevLett.100.118104.
9
Rapid signal transduction in living cells is a unique feature of mechanotransduction.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6626-31. doi: 10.1073/pnas.0711704105. Epub 2008 May 2.
10
Round versus flat: bone cell morphology, elasticity, and mechanosensing.
J Biomech. 2008;41(7):1590-8. doi: 10.1016/j.jbiomech.2008.01.031. Epub 2008 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验