Department of Integrative Biology and Pharmacology, University of Texas-Health Science Center, Houston, Texas, USA.
Biophys J. 2010 Nov 3;99(9):2957-66. doi: 10.1016/j.bpj.2010.09.020.
The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.
鞘氨醇碱基 trans 双键对鞘磷脂(SMs)的独特性质的确切作用,SMs 是生物膜筏状结构中的主要脂质成分之一,尚未得到充分探索。有几项比较 SM 和甘油磷脂双层水合、脂质堆积和氢键行为的报告总体上发现了显著差异。然而,将双键几何形状与这些热力学和结构变化联系起来的原子相互作用仍然难以捉摸。最近关于神经酰胺的报告表明,神经酰胺与 SM 仅在其羟基头基上有所不同,将鞘氨醇碱基的 trans 双键替换为 cis 会削弱这些脂质的氢键潜力,从而改变它们的生物活性。基于全反式、全顺式和反式/顺式(4:1 比例)鞘磷脂脂质双层的广泛(总 0.75 μs)原子分子动力学模拟数据,我们在此表明,trans 构型允许形成比 cis 构型更多的氢键。额外的氢键使全反式和反式/顺式双层中的脂质堆积更加紧密,从而减少了每个脂质的平均面积,同时增加了链序和双层厚度。此外,全反式双层中进入脂质-水界面的水分子比全顺式双层少。这些结果为天然鞘磷脂 trans 双键构象对有序膜结构域形成的重要性提供了原子基础。