Suppr超能文献

细胞骨架异常在 I 型无脑回畸形的神经病理学和病理生理学中的作用。

Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly.

机构信息

Inserm, U613, Brest, France.

出版信息

Acta Neuropathol. 2011 Feb;121(2):149-70. doi: 10.1007/s00401-010-0768-9. Epub 2010 Nov 3.

Abstract

Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria-pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation.

摘要

I 型无脑回畸形或脑回巨脑回畸形是一种罕见的发育障碍,由神经元迁移缺陷引起。其特征为脑回缺失和大脑皮层增厚,并可能伴有其他脑和内脏异常。自发现第一个遗传原因(17p13.3 号染色体缺失)以来,已经发现了另外六个基因负责脑回巨脑回畸形。在这篇综述中,我们总结了这些遗传疾病的最新知识,包括临床、神经病理学和分子结果。LIS1、DCX、ARX、TUBA1A、VLDLR、RELN 基因以及最近的 WDR62 基因的遗传改变导致迁移异常,同时还伴有更复杂和微妙的异常,影响细胞增殖和分化,即神经突生长、轴突导向、轴突运输、连接,甚至髓鞘形成。临床、神经病理学和影像学缺陷的数量和异质性表明,I 型无脑回畸形现在包括几种脑畸形形式。体外实验和突变动物研究,以及人类的神经病理学异常,对于理解病理生理机制具有不可估量的意义,突出了细胞增殖、神经元迁移和分化所需的细胞骨架动力学的核心作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验