Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Blvd., Sacramento, California 95817, United States.
Langmuir. 2010 Dec 7;26(23):18293-9. doi: 10.1021/la103237e. Epub 2010 Nov 3.
The use of inorganic nanoparticles (NPs) as vectors for the delivery of oligonucleotides for in vitro and in vivo applications is rapidly gaining momentum. Some of the reasons making them especially good candidates for this purpose are their ease of synthesis in a range of sizes and surface coatings, their propensity to penetrate cell membranes, their stability and biocompatibility, and their unique size-dependent physical properties that impart additional diagnostic and therapeutic tools. Notwithstanding these notable attributes, a major obstacle to their practical use is given by the typically low oligonucleotide loading levels attainable through conventional bioconjugation procedures. This shortcoming is especially worrisome as toxicity concerns have been associated with codelivery of NPs. In this paper we are analytically analyzing the formation of electrostatic complexes between negatively charged ssDNA and positively charged iron oxide nanoparticles (SPIO-NP) with the purpose of identifying the optimal conditions leading to stable formulations at high oligo loading levels. The formation and loading levels of ssDNA:SPIO-NP complexes have been investigated at different oligo:NP ratios and under different ionic strengths through dynamic light scattering, fluorescence quenching experiments, and pull-down assays. Through these studies we have identified optimal conditions for attaining maximal oligo loading levels, and we are proposing a simple model to explain an unusual behavior observed in the formation of the complexes. Finally, we introduce an alternative loading method relying on the electrostatic coloading of an oligo sequence in the presence of a negatively charged PEGylated block copolymer, yielding very stable and high loading PEGylated ssDNA:SPIO-NPs. The findings that we are reporting are of general validity, and similar conditions could be easily translated to the electrostatic formation of ssDNA:NP complexes consisting of different NP materials and sizes.
无机纳米粒子(NPs)作为用于体外和体内应用的寡核苷酸传递载体的使用正在迅速发展。使它们成为这种用途的特别好的候选物的一些原因是它们在一系列大小和表面涂层中易于合成,它们穿透细胞膜的倾向,它们的稳定性和生物相容性,以及它们独特的尺寸依赖性物理性质赋予了额外的诊断和治疗工具。尽管具有这些显著的特性,但它们的实际应用的一个主要障碍是通过传统的生物缀合程序可实现的寡核苷酸负载水平通常较低。由于与 NPs 共递送相关的毒性问题,这种缺点尤其令人担忧。在本文中,我们对带负电荷的 ssDNA 与带正电荷的氧化铁纳米粒子(SPIO-NP)之间的静电复合物的形成进行了分析,目的是确定导致在高寡核苷酸负载水平下形成稳定配方的最佳条件。通过动态光散射,荧光猝灭实验和下拉实验,在不同的寡核苷酸:NP 比和不同的离子强度下研究了 ssDNA:SPIO-NP 复合物的形成和负载水平。通过这些研究,我们确定了获得最大寡核苷酸负载水平的最佳条件,并提出了一个简单的模型来解释在复合物形成中观察到的异常行为。最后,我们引入了一种替代的加载方法,该方法依赖于在带负电荷的聚乙二醇化嵌段共聚物存在下静电共加载寡核苷酸序列,从而产生非常稳定和高负载的聚乙二醇化 ssDNA:SPIO-NPs。我们报告的发现具有普遍的有效性,并且类似的条件可以很容易地转化为由不同的 NP 材料和尺寸组成的 ssDNA:NP 复合物的静电形成。
ACS Appl Mater Interfaces. 2014-7-22
Anal Chem. 2009-10-15
ACS Appl Mater Interfaces. 2015-3-19
J Colloid Interface Sci. 2014-10-1
ACS Nano. 2010-7-27
Nano Lett. 2010-4-14
Cell Mol Life Sci. 2009-11-7
Expert Opin Drug Deliv. 2009-7
Nano Lett. 2009-5
Expert Rev Mol Med. 2009-3-23
Nucleic Acids Res. 2008-7