Servant Nicolas, Gravier Eleonore, Gestraud Pierre, Laurent Cecile, Paccard Caroline, Biton Anne, Brito Isabel, Mandel Jonas, Asselain Bernard, Barillot Emmanuel, Hupé Philippe
Institut Curie, Paris F-75248, France.
BMC Res Notes. 2010 Nov 3;3:277. doi: 10.1186/1756-0500-3-277.
The increasing number of methodologies and tools currently available to analyse gene expression microarray data can be confusing for non specialist users.
Based on the experience of biostatisticians of Institut Curie, we propose both a clear analysis strategy and a selection of tools to investigate microarray gene expression data. The most usual and relevant existing R functions were discussed, validated and gathered in an easy-to-use R package (EMA) devoted to gene expression microarray analysis. These functions were improved for ease of use, enhanced visualisation and better interpretation of results.
Strategy and tools proposed in the EMA R package could provide a useful starting point for many microarrays users. EMA is part of Comprehensive R Archive Network and is freely available at http://bioinfo.curie.fr/projects/ema/.
目前可用于分析基因表达微阵列数据的方法和工具越来越多,这可能会让非专业用户感到困惑。
基于居里研究所生物统计学家的经验,我们提出了一种清晰的分析策略以及一系列用于研究微阵列基因表达数据的工具。我们讨论、验证了最常用且相关的现有R函数,并将其整合到一个易于使用的专门用于基因表达微阵列分析的R包(EMA)中。这些函数经过改进,以提高易用性、增强可视化效果并更好地解释结果。
EMA R包中提出的策略和工具可为许多微阵列用户提供一个有用的起点。EMA是综合R存档网络的一部分,可从http://bioinfo.curie.fr/projects/ema/免费获取。