Suppr超能文献

The sulfhydryl content of L-threonine dehydrogenase from Escherichia coli K-12: relation to catalytic activity and Mn2+ activation.

作者信息

Craig P A, Dekker E E

机构信息

Department of Biological Chemistry, University of Michigan, Ann Arbor.

出版信息

Biochim Biophys Acta. 1990 Jan 19;1037(1):30-8. doi: 10.1016/0167-4838(90)90098-z.

Abstract

When oxidized to cysteic acid by performic acid or converted to carboxymethylcysteine by alkylation of the reduced enzyme with iodoacetate, a total of six half-cystine residues/subunit are found in L-threonine dehydrogenase (L-threonine: NAD+ oxidoreductase, EC 1.1.1.103; L-threonine + NAD(+)----2-amino-3-oxobutyrate + NADH) from Escherichia coli K-12. Of this total, two exist in disulfide linkage, whereas four are titratable under denaturing conditions by dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), or p-mercuribenzoate. The kinetics of enzyme inactivation and of modification by the latter two reagents indicate that threonine dehydrogenase has no free thiols that selectively react with bulky compounds. While incubation of the enzyme with a large excess of iodoacetamide causes less than 10% loss of activity, the native dehydrogenase is uniquely reactive with and completely inactivated by iodoacetate. The rate of carboxymethylation by iodoacetate of one -SH group/subunit is identical with the rate of inactivation and the carboxymethylated enzyme is no longer able to bind Mn2+. NADH (0.5 mM) provides 40% protection against this inactivation; 60 to 70% protection is seen in the presence of saturating levels of NADH plus L-threonine. Such results coupled with an analysis of the kinetics of inactivation caused by iodoacetate are interpreted as indicating the inhibitor first forms a reversible complex with a positively charged moiety in or near the microenvironment of a reactive -SH group in the enzyme before irreversible alkylation occurs. Specific alkylation of one -SH group/enzyme subunit apparently causes protein conformational changes that entail a loss of catalytic activity and the ability to bind Mn2+.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验