Yoshino Hirokazu, Dong Chen, Washizawa Yoshikazu, Yamashita Yukihiko
Research Center, Asahi Glass Company Ltd., Tsurumi, Yokohama, Japan.
IEEE Trans Neural Netw. 2010 Nov;21(11):1719-30. doi: 10.1109/TNN.2010.2059042.
The Wiener filter (WF) is widely used for inverse problems. From an observed signal, it provides the best estimated signal with respect to the squared error averaged over the original and the observed signals among linear operators. The kernel WF (KWF), extended directly from WF, has a problem that an additive noise has to be handled by samples. Since the computational complexity of kernel methods depends on the number of samples, a huge computational cost is necessary for the case. By using the first-order approximation of kernel functions, we realize KWF that can handle such a noise not by samples but as a random variable. We also propose the error estimation method for kernel filters by using the approximations. In order to show the advantages of the proposed methods, we conducted the experiments to denoise images and estimate errors. We also apply KWF to classification since KWF can provide an approximated result of the maximum a posteriori classifier that provides the best recognition accuracy. The noise term in the criterion can be used for the classification in the presence of noise or a new regularization to suppress changes in the input space, whereas the ordinary regularization for the kernel method suppresses changes in the feature space. In order to show the advantages of the proposed methods, we conducted experiments of binary and multiclass classifications and classification in the presence of noise.
维纳滤波器(WF)被广泛应用于逆问题。它从观测信号出发,在线性算子中,相对于原始信号和观测信号上的均方误差,提供最佳估计信号。直接从WF扩展而来的核维纳滤波器(KWF)存在一个问题,即加性噪声必须通过样本进行处理。由于核方法的计算复杂度取决于样本数量,在这种情况下需要巨大的计算成本。通过使用核函数的一阶近似,我们实现了KWF,它可以将此类噪声作为随机变量来处理,而非通过样本。我们还提出了利用这些近似来估计核滤波器误差的方法。为了展示所提方法的优势,我们进行了图像去噪和误差估计实验。我们还将KWF应用于分类,因为KWF可以提供最大后验概率分类器的近似结果,该分类器能提供最佳识别精度。准则中的噪声项可用于存在噪声时的分类或作为一种新的正则化来抑制输入空间中的变化,而核方法的普通正则化则抑制特征空间中的变化。为了展示所提方法的优势,我们进行了二分类、多分类以及存在噪声时的分类实验。