Suppr超能文献

听觉传入纤维中的初级传入去极化和频率处理。

Primary afferent depolarization and frequency processing in auditory afferents.

机构信息

Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.

出版信息

J Neurosci. 2010 Nov 3;30(44):14862-9. doi: 10.1523/JNEUROSCI.2734-10.2010.

Abstract

Presynaptic inhibition is a widespread mechanism modulating the efficiency of synaptic transmission and in sensory pathways is coupled to primary afferent depolarizations. Axonal terminals of bush-cricket auditory afferents received 2-5 mV graded depolarizing inputs, which reduced the amplitude of invading spikes and indicated presynaptic inhibition. These inputs were linked to a picrotoxin-sensitive increase of Ca(2+) in the terminals. Electrophysiological recordings and optical imaging showed that in individual afferents the sound frequency tuning based on spike rates was different from the tuning of the graded primary afferent depolarizations. The auditory neuropil of the bush-cricket Mecopoda elongata is tonotopically organized, with low frequencies represented anteriorly and high frequencies represented posteriorly. In contrast graded depolarizing inputs were tuned to high-frequencies anteriorly and to low-frequencies posteriorly. Furthermore anterior and posterior axonal branches of individual afferents received different levels of primary afferent depolarization depending on sound frequency. The presence of primary afferent depolarization in the afferent terminals indicates that presynaptic inhibition may shape the synaptic transmission of frequency-specific activity to auditory interneurons.

摘要

突触前抑制是一种广泛存在的调节突触传递效率的机制,在感觉通路上与初级传入去极化耦联。蝉的听觉传入纤维的轴突末梢接受 2-5 mV 的分级去极化输入,这降低了入侵尖峰的幅度,并表明存在突触前抑制。这些输入与胡椒碱敏感的末梢内钙离子增加有关。电生理记录和光学成像显示,在单个传入纤维中,基于尖峰率的频率调谐与分级初级传入去极化的调谐不同。蝉的听觉神经原是音位组织的,低频在前,高频在后。相反,分级去极化输入在前部调谐到高频,在后部调谐到低频。此外,根据声音频率,单个传入纤维的前、后轴突分支接收到不同水平的初级传入去极化。传入末梢中的初级传入去极化表明,突触前抑制可能会影响特定频率的活动向听觉中间神经元的突触传递。

相似文献

1
Primary afferent depolarization and frequency processing in auditory afferents.
J Neurosci. 2010 Nov 3;30(44):14862-9. doi: 10.1523/JNEUROSCI.2734-10.2010.
2
A corollary discharge mechanism modulates central auditory processing in singing crickets.
J Neurophysiol. 2003 Mar;89(3):1528-40. doi: 10.1152/jn.0846.2002.
4
Tonotopic Ca dynamics and sound processing in auditory interneurons of the bush-cricket Mecopoda elongata.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 May;210(3):353-369. doi: 10.1007/s00359-023-01638-6. Epub 2023 May 24.
5
Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish.
J Neurosci. 1999 Jul 15;19(14):6079-89. doi: 10.1523/JNEUROSCI.19-14-06079.1999.
8
Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors.
J Neurophysiol. 1999 Jul;82(1):512-4. doi: 10.1152/jn.1999.82.1.512.
9
Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket.
J Neurophysiol. 2015 Jan 1;113(1):390-9. doi: 10.1152/jn.00520.2014. Epub 2014 Oct 15.
10
Auditory DUM neurons in a bush-cricket: A filter bank for carrier frequency.
J Comp Neurol. 2018 May 1;526(7):1166-1182. doi: 10.1002/cne.24399. Epub 2018 Feb 12.

引用本文的文献

2
Tonotopic Ca dynamics and sound processing in auditory interneurons of the bush-cricket Mecopoda elongata.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 May;210(3):353-369. doi: 10.1007/s00359-023-01638-6. Epub 2023 May 24.
4
Wiring patterns from auditory sensory neurons to the escape and song-relay pathways in fruit flies.
J Comp Neurol. 2020 Aug;528(12):2068-2098. doi: 10.1002/cne.24877. Epub 2020 Feb 19.
5
Non-invasive biophysical measurement of travelling waves in the insect inner ear.
R Soc Open Sci. 2017 May 3;4(5):170171. doi: 10.1098/rsos.170171. eCollection 2017 May.
6
Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera).
R Soc Open Sci. 2015 Jun 9;2(6):140473. doi: 10.1098/rsos.140473. eCollection 2015 Jun.
8
A synaptic mechanism for temporal filtering of visual signals.
PLoS Biol. 2014 Oct 21;12(10):e1001972. doi: 10.1371/journal.pbio.1001972. eCollection 2014 Oct.
9
Response differences of intersegmental auditory neurons recorded close to or far away from the presumed spike-generating zone.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Jul;200(7):627-39. doi: 10.1007/s00359-014-0907-1. Epub 2014 Apr 13.
10
Presynaptic inhibition of olfactory sensory neurons: new mechanisms and potential functions.
Chem Senses. 2013 Jul;38(6):459-74. doi: 10.1093/chemse/bjt018. Epub 2013 Jun 11.

本文引用的文献

1
Dynamics of free intracellular Ca2+ during synaptic and spike activity of cricket tibial motoneurons.
Eur J Neurosci. 2009 Apr;29(7):1357-68. doi: 10.1111/j.1460-9568.2009.06694.x. Epub 2009 Mar 20.
2
Estimating firing rates from calcium signals in locust projection neurons in vivo.
Front Neural Circuits. 2007 Nov 2;1:2. doi: 10.3389/neuro.04.002.2007. eCollection 2007.
3
Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera.
Zoology (Jena). 2009;112(1):48-68. doi: 10.1016/j.zool.2008.04.005. Epub 2008 Oct 2.
5
Axonal GABAA receptors.
Eur J Neurosci. 2008 Sep;28(5):841-8. doi: 10.1111/j.1460-9568.2008.06404.x. Epub 2008 Aug 8.
6
A presynaptic gain control mechanism fine-tunes olfactory behavior.
Neuron. 2008 Jul 31;59(2):311-21. doi: 10.1016/j.neuron.2008.07.003.
7
Dendritic design implements algorithm for synaptic extraction of sensory information.
J Neurosci. 2008 Apr 30;28(18):4592-603. doi: 10.1523/JNEUROSCI.5354-07.2008.
8
In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation.
Science. 1994 Feb 11;263(5148):823-6. doi: 10.1126/science.263.5148.823.
9
Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone.
Dev Neurobiol. 2007 Jan;67(1):68-80. doi: 10.1002/dneu.20323.
10
The cellular basis of a corollary discharge.
Science. 2006 Jan 27;311(5760):518-22. doi: 10.1126/science.1120847.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验