Department of Neuroscience, University of Wisconsin, Madison, United States.
McPherson Eye Research Institute, University of Wisconsin, Madison, United States.
Elife. 2021 Apr 27;10:e60994. doi: 10.7554/eLife.60994.
Output signals of neural circuits, including the retina, are shaped by a combination of excitatory and inhibitory signals. Inhibitory signals can act presynaptically on axon terminals to control neurotransmitter release and regulate circuit function. However, it has been difficult to study the role of presynaptic inhibition in most neural circuits due to lack of cell type-specific and receptor type-specific perturbations. In this study, we used a transgenic approach to selectively eliminate GABA inhibitory receptors from select types of second-order neurons - bipolar cells - in mouse retina and examined how this affects the light response properties of the well-characterized ON alpha ganglion cell retinal circuit. Selective loss of GABA receptor-mediated presynaptic inhibition causes an enhanced sensitivity and slower kinetics of light-evoked responses from ON alpha ganglion cells thus highlighting the role of presynaptic inhibition in gain control and temporal filtering of sensory signals in a key neural circuit in the mammalian retina.
神经回路的输出信号,包括视网膜,是由兴奋性和抑制性信号的组合形成的。抑制性信号可以在轴突末梢上产生突触前作用,以控制神经递质的释放并调节回路功能。然而,由于缺乏细胞类型特异性和受体类型特异性的干扰,大多数神经回路中抑制性突触传递的作用难以研究。在这项研究中,我们使用转基因方法选择性地从老鼠视网膜中的特定类型的二级神经元(双极细胞)中消除 GABA 抑制性受体,并研究了这如何影响特征明确的 ON alpha 神经节细胞视网膜回路的光反应特性。选择性地丧失 GABA 受体介导的突触前抑制会导致 ON alpha 神经节细胞的光诱发反应的敏感性增强和动力学变慢,从而突出了突触前抑制在哺乳动物视网膜中关键神经回路的感觉信号的增益控制和时间滤波中的作用。