Hirshman M F, Goodyear L J, Wardzala L J, Horton E D, Horton E S
Department of Medicine, University of Vermont College of Medicine, Burlington 05405.
J Biol Chem. 1990 Jan 15;265(2):987-91.
The purpose of this study was to simultaneously isolate skeletal muscle plasma and microsomal membranes from the hind limbs of male Sprague-Dawley rats perfused either in the absence or presence of 20 milliunits/ml insulin and to determine the effect of insulin on the number and distribution of glucose transporters in these membrane fractions. Insulin increased hind limb glucose uptake greater than 3-fold (2.4 +/- 0.7 versus 9.2 +/- 1.0 mumol/g x h, p less than 0.001). Plasma membrane glucose transporter number, measured by cytochalasin B binding, increased 2-fold (9.1 +/- 1.0 to 20.4 +/- 3.1 pmol/mg protein, p less than 0.005) in insulin-stimulated muscle while microsomal membrane transporters decreased significantly (14.8 +/- 1.6 to 9.8 +/- 1.4 pmol/mg protein, p less than 0.05). No change in the dissociation constant (Kd approximately 120 nm) was observed. K+-stimulated-p-nitrophenol phosphatase, 5'-nucleotidase, and galactosyltransferase specific activity, enrichment, and recovery in the plasma and microsomal membrane fractions were not altered by insulin treatment. Western blot analysis using the monoclonal antibody mAb 1F8 (specific for the insulin-regulatable glucose transporter) demonstrated increased glucose transporter densities in plasma membranes from insulin-treated hind limb skeletal muscle compared with untreated tissues, while microsomal membranes from the insulin-treated hind limb skeletal muscle had a concomitant decrease in transporter density. We conclude that the increase in plasma membrane glucose transporters explains, at least in part, the increase in glucose uptake associated with insulin stimulation of hind limb skeletal muscle. Our data further suggest that these recruited transporters originate from an intracellular microsomal pool, consistent with the translocation hypothesis.
本研究的目的是从雄性Sprague-Dawley大鼠的后肢中同时分离骨骼肌血浆和微粒体膜,这些大鼠在灌注时分别处于不存在或存在20毫单位/毫升胰岛素的情况下,并确定胰岛素对这些膜组分中葡萄糖转运蛋白数量和分布的影响。胰岛素使后肢葡萄糖摄取增加超过3倍(2.4±0.7对9.2±1.0微摩尔/克×小时,p<0.001)。通过细胞松弛素B结合测定的质膜葡萄糖转运蛋白数量,在胰岛素刺激的肌肉中增加了2倍(9.1±1.0至20.4±3.1皮摩尔/毫克蛋白质,p<0.005),而微粒体膜转运蛋白则显著减少(14.8±1.6至9.8±1.4皮摩尔/毫克蛋白质,p<0.05)。未观察到解离常数(Kd约为120纳米)的变化。胰岛素处理未改变血浆和微粒体膜组分中K⁺刺激的对硝基苯酚磷酸酶、5'-核苷酸酶和半乳糖基转移酶的比活性、富集和回收率。使用单克隆抗体mAb 1F8(对胰岛素可调节的葡萄糖转运蛋白具有特异性)进行的蛋白质免疫印迹分析表明,与未处理的组织相比,胰岛素处理的后肢骨骼肌质膜中的葡萄糖转运蛋白密度增加,而胰岛素处理的后肢骨骼肌微粒体膜中的转运蛋白密度则相应降低。我们得出结论,质膜葡萄糖转运蛋白的增加至少部分解释了与胰岛素刺激后肢骨骼肌相关的葡萄糖摄取增加。我们的数据进一步表明,这些新募集的转运蛋白源自细胞内微粒体池,这与转位假说一致。