Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.
Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.
Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual-the generation of the kilowatt pulses with which electric fish stun their prey-to the quotidian-the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl(-) channel and later confirmed by crystal structures of bacterial Cl(-)/H(+) antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins-the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl(-) and H(+) antiport in the transporters-are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways' picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl(-)/H(+) exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not required for Cl(-)/H(+) exchange in ClC transporters.
ClC 家族的通道和转运蛋白负责无机阴离子的跨膜转运,以完成各种生物学任务,从电鱼产生千瓦脉冲电击猎物等不寻常的任务,到内体、液泡和溶酶体酸化等日常任务。ClC 蛋白的同源二聚体结构最初是从软骨鱼 Cl(-)通道的单分子研究中推断出来的,后来通过细菌 Cl(-)/H(+)反向转运体的晶体结构得到证实,显然是普遍存在的。此外,使这些蛋白质中的离子发生运动的基本机制——通道中阴离子扩散的水相孔和转运体中协调 Cl(-)和 H(+)反向转运的离子偶联室——完全包含在同源二聚体的每个亚基中。共价交联穿过二聚体界面将细菌 ClC 转运体束缚在其中,其近正常功能,以及串联的人类同源物的行为,都表明转运循环位于每个亚基内,不需要亚基之间的刚体重排。然而,这种证据只是推论性的,因为有例子表明,参与二聚化的跨膜 ClC 结构域的四级重排调节转运活性,因此我们不能断言一个“平行途径”的观点是确定的,即同源二聚体由两个独立工作的单亚基转运体组成。这种观点的一个强烈预测是,原则上应该有可能获得单体 ClC。在这里,我们利用已知的 ClC Cl(-)/H(+)交换体的结构,即大肠杆菌的 ClC-ec1,设计突变体来破坏二聚体界面,同时保持单个亚基的结构和转运功能。结果表明,ClC 亚基本身是转运的基本功能单位,跨亚基相互作用不是 ClC 转运体中 Cl(-)/H(+)交换所必需的。