Suppr超能文献

不同土地利用类型上空气细菌群落的空间变异性及其与潜在源环境细菌群落的关系。

Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments.

机构信息

Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0216, USA.

出版信息

ISME J. 2011 Apr;5(4):601-12. doi: 10.1038/ismej.2010.167. Epub 2010 Nov 4.

Abstract

Although bacteria are ubiquitous in the near-surface atmosphere and they can have important effects on human health, airborne bacteria have received relatively little attention and their spatial dynamics remain poorly understood. Owing to differences in meteorological conditions and the potential sources of airborne bacteria, we would expect the atmosphere over different land-use types to harbor distinct bacterial communities. To test this hypothesis, we sampled the near-surface atmosphere above three distinct land-use types (agricultural fields, suburban areas and forests) across northern Colorado, USA, sampling five sites per land-use type. Microbial abundances were stable across land-use types, with ∼10(5)-10(6) bacterial cells per m(3) of air, but the concentrations of biological ice nuclei, determined using a droplet freezing assay, were on average two and eight times higher in samples from agricultural areas than in the other two land-use types. Likewise, the composition of the airborne bacterial communities, assessed via bar-coded pyrosequencing, was significantly related to land-use type and these differences were likely driven by shifts in the sources of bacteria to the atmosphere across the land-uses, not local meteorological conditions. A meta-analysis of previously published data shows that atmospheric bacterial communities differ from those in potential source environments (leaf surfaces and soils), and we demonstrate that we may be able to use this information to determine the relative inputs of bacteria from these source environments to the atmosphere. This work furthers our understanding of bacterial diversity in the atmosphere, the terrestrial controls on this diversity and potential approaches for source tracking of airborne bacteria.

摘要

尽管细菌在近地表大气中无处不在,并且它们可能对人类健康产生重要影响,但空气中的细菌受到的关注相对较少,其空间动态仍未被充分理解。由于气象条件和空气细菌潜在来源的差异,我们预计不同土地利用类型上空的大气中会存在不同的细菌群落。为了验证这一假设,我们在美国科罗拉多州北部的三种不同土地利用类型(农田、郊区和森林)上空采集了近地表大气样本,每种土地利用类型采集五个样本。细菌丰度在土地利用类型之间保持稳定,空气中约有 10(5)-10(6)个细菌细胞/立方米,但使用液滴冷冻测定法测定的生物冰核浓度在农田样本中平均比其他两种土地利用类型高 2 到 8 倍。同样,通过 bar-coded pyrosequencing 评估的空气细菌群落组成与土地利用类型显著相关,这些差异可能是由于细菌来源在不同土地利用类型之间向大气转移的变化所致,而不是当地气象条件。对先前发表的数据的荟萃分析表明,大气细菌群落与潜在源环境(叶片表面和土壤)中的细菌群落不同,我们证明我们可以利用这些信息来确定这些源环境中细菌向大气的相对输入。这项工作增进了我们对大气中细菌多样性、这种多样性的陆地控制以及追踪空气细菌来源的潜在方法的理解。

相似文献

2
Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere.
Environ Sci Technol. 2013;47(21):12097-106. doi: 10.1021/es402970s. Epub 2013 Oct 22.
3
Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei.
Appl Environ Microbiol. 2009 Aug;75(15):5121-30. doi: 10.1128/AEM.00447-09. Epub 2009 Jun 5.
4
5
Temporal variability in soil microbial communities across land-use types.
ISME J. 2013 Aug;7(8):1641-50. doi: 10.1038/ismej.2013.50. Epub 2013 Apr 4.
6
Sources of bacteria in outdoor air across cities in the midwestern United States.
Appl Environ Microbiol. 2011 Sep;77(18):6350-6. doi: 10.1128/AEM.05498-11. Epub 2011 Jul 29.
7
Global airborne microbial communities controlled by surrounding landscapes and wind conditions.
Sci Rep. 2019 Oct 8;9(1):14441. doi: 10.1038/s41598-019-51073-4.
8
Different types of agricultural land use drive distinct soil bacterial communities.
Sci Rep. 2020 Oct 15;10(1):17418. doi: 10.1038/s41598-020-74193-8.
9
Spatial variability of inhalable fungal communities in airborne PM across Nanchang, China.
Sci Total Environ. 2020 Dec 1;746:141171. doi: 10.1016/j.scitotenv.2020.141171. Epub 2020 Jul 23.
10
Airborne bacterial communities of outdoor environments and their associated influencing factors.
Environ Int. 2020 Dec;145:106156. doi: 10.1016/j.envint.2020.106156. Epub 2020 Oct 8.

引用本文的文献

1
Guidelines for preventing and reporting contamination in low-biomass microbiome studies.
Nat Microbiol. 2025 Jun 20. doi: 10.1038/s41564-025-02035-2.
3
The role of skin microbiota in lichen planus from a Mendelian randomization perspective.
Arch Dermatol Res. 2025 Jan 15;317(1):245. doi: 10.1007/s00403-024-03677-8.
4
Synoptic Variation Drives Genetic Diversity and Transmission Mode of Airborne DNA Viruses in Urban Space.
Adv Sci (Weinh). 2024 Dec;11(46):e2404512. doi: 10.1002/advs.202404512. Epub 2024 Oct 22.
5
A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication.
Front Microbiol. 2024 Sep 19;15:1428415. doi: 10.3389/fmicb.2024.1428415. eCollection 2024.
6
Urban sports fields support higher levels of soil butyrate and butyrate-producing bacteria than urban nature parks.
Ecol Evol. 2024 Jul 22;14(7):e70057. doi: 10.1002/ece3.70057. eCollection 2024 Jul.
7
Seasonal distribution of human-to-human pathogens in airborne PM and their potential high-risk ARGs.
Front Microbiol. 2024 Jul 4;15:1422637. doi: 10.3389/fmicb.2024.1422637. eCollection 2024.
8
Aerosolized Cyanobacterial Harmful Algal Bloom Toxins: Microcystin Congeners Quantified in the Atmosphere.
Environ Sci Technol. 2023 Dec 26;57(51):21801-21814. doi: 10.1021/acs.est.3c03297. Epub 2023 Dec 11.
9
Diversity and ice nucleation activity of in drone-based water samples from eight lakes in Austria.
PeerJ. 2023 Nov 28;11:e16390. doi: 10.7717/peerj.16390. eCollection 2023.
10
A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield.
Braz J Microbiol. 2024 Mar;55(1):587-628. doi: 10.1007/s42770-023-01179-9. Epub 2023 Nov 25.

本文引用的文献

1
The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves.
Environ Microbiol. 2010 Nov;12(11):2885-93. doi: 10.1111/j.1462-2920.2010.02258.x.
2
QIIME allows analysis of high-throughput community sequencing data.
Nat Methods. 2010 May;7(5):335-6. doi: 10.1038/nmeth.f.303. Epub 2010 Apr 11.
3
Forensic identification using skin bacterial communities.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6477-81. doi: 10.1073/pnas.1000162107. Epub 2010 Mar 15.
4
Presence of pathogens and indicator microbes at a non-point source subtropical recreational marine beach.
Appl Environ Microbiol. 2010 Feb;76(3):724-32. doi: 10.1128/AEM.02127-09. Epub 2009 Dec 4.
5
Human-specific fecal bacteria in wastewater treatment plant effluents.
Water Res. 2010 Mar;44(6):1873-83. doi: 10.1016/j.watres.2009.11.027. Epub 2009 Nov 20.
6
PyNAST: a flexible tool for aligning sequences to a template alignment.
Bioinformatics. 2010 Jan 15;26(2):266-7. doi: 10.1093/bioinformatics/btp636. Epub 2009 Nov 13.
8
Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.
Appl Environ Microbiol. 2009 Aug;75(15):5111-20. doi: 10.1128/AEM.00335-09. Epub 2009 Jun 5.
9
Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei.
Appl Environ Microbiol. 2009 Aug;75(15):5121-30. doi: 10.1128/AEM.00447-09. Epub 2009 Jun 5.
10
FastTree: computing large minimum evolution trees with profiles instead of a distance matrix.
Mol Biol Evol. 2009 Jul;26(7):1641-50. doi: 10.1093/molbev/msp077. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验