UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany.
Chem Res Toxicol. 2010 Dec 20;23(12):1936-46. doi: 10.1021/tx100298w.
The acute and chronic bacterial toxicity of 34 organic compounds comprising 19 baseline narcotics and 15 epoxides has been determined with regard to 30-min bioluminescence and 24-h growth inhibition in terms of EC50 (effective concentration 50%) values employing Vibrio fischeri. For the narcotics, linear regression of log EC50 on log Kow (octanol/water partition coefficient) yields r2 (squared correlation coefficient) and rms (root-mean-square error) values of 0.95 and 0.44 (30-min), and 0.94 and 0.34 (24-h), respectively. Employing the resultant baseline narcosis models, toxicity enhancement (Te) values were derived as a ratio of narcosis-predicted over experimental EC50 for the epoxides. For seven aliphatic epoxides, log Te was below 1 in both assays, indicating narcosis-range toxicity with regard to 30-min bioluminescence and 24-h growth inhibition. Concerning eight nonaliphatic epoxides, log Te values up to 2.4 were observed, reflecting excess toxicity through an enhanced electrophilic reactivity of the compounds. Here, however, the intercorrelation between both assays was very low (r2 = 0.09). The results are discussed in terms of electronic substituent effects activating an SN2-type epoxide reaction with nucleophilic protein sites and side-chain activation offering alternative electrophile-nucleophile reaction routes at side-chain sites, leading to respective structural alerts as indicators of excess toxicity. Surprisingly, 30-min bioluminescence appears to be slightly more sensitive to chemical stress than 24-h growth, which holds both for baseline narcotics and for most of the epoxides. This is also reflected by effective narcosis doses 50%, ED50, of 7.1 mmol/kg (30-min) and 7.7 mmol/kg (24-h) estimated from narcosis theory. Keeping in mind the different end points (bioluminescence vs growth) involved, this finding demonstrates that chronic toxicity is not always more sensitive than acute toxicity, calling for analyses with regard to further respective cases and associated mechanistic causes.
采用发光细菌法,测定了 34 种有机化合物(包括 19 种基准麻醉品和 15 种环氧化物)的急性和慢性细菌毒性,以 30 分钟生物发光和 24 小时生长抑制的 EC50(有效浓度 50%)值表示。对于麻醉品,logEC50 与 logKow(辛醇/水分配系数)的线性回归得出 r2(平方相关系数)和 rms(均方根误差)值分别为 0.95 和 0.44(30 分钟)和 0.94 和 0.34(24 小时)。利用所得的基准麻醉模型,作为环氧化物麻醉预测 EC50 与实验 EC50 的比值,得出毒性增强(Te)值。对于七种脂肪族环氧化物,两种测定方法中的 logTe 均低于 1,表明 30 分钟生物发光和 24 小时生长抑制均处于麻醉范围毒性。对于八种非脂肪族环氧化物,观察到高达 2.4 的 logTe 值,表明化合物的亲电反应性增强导致毒性过剩。然而,两种测定方法之间的相关性非常低(r2=0.09)。结果根据电子取代基效应进行了讨论,这些效应激活了 SN2 型环氧化物与亲核蛋白部位的反应,以及侧链活化提供了在侧链部位进行替代亲电-亲核反应的途径,导致相应的结构警报作为毒性过剩的指标。令人惊讶的是,30 分钟生物发光似乎比 24 小时生长对化学应激更敏感,这对于基准麻醉品和大多数环氧化物都是如此。这也反映在麻醉理论估计的有效麻醉剂量 50%,ED50 为 7.1mmol/kg(30 分钟)和 7.7mmol/kg(24 小时)。考虑到涉及的不同终点(生物发光与生长),这一发现表明慢性毒性并不总是比急性毒性更敏感,需要对进一步的相应情况和相关机制原因进行分析。