Suppr超能文献

定量结构-活性关系法预测有机化合物的鱼类急性毒性

Quantitative read-across for predicting the acute fish toxicity of organic compounds.

机构信息

UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany.

出版信息

Environ Sci Technol. 2011 May 15;45(10):4616-22. doi: 10.1021/es200361r. Epub 2011 Apr 14.

Abstract

Read-across enables the interpolation of a property for a target chemical from respective experimental data of sufficiently similar compounds. Employing a set of 692 organic compounds with experimental values for the 96 h fish toxicity toward the fathead minnow in terms of LC(50) (lethal concentration 50%) values, a read-across method has been developed that is based on atom-centered fragments (ACFs) for evaluating chemical similarity. Prediction of log LC(50) proceeds through reading across the toxicity enhancement over predicted narcosis-level toxicity in terms of the respective logarithmic ratio, log T(e), and adding the respective baseline narcosis LC(50) estimated from log K(ow) (octanol/water partition coefficient). Depending on the minimum similarity imposed on a compound to serve as read-across basis for the target chemical, three different standard settings have been introduced, allowing one to perform screening-level estimations as well as predictions with intermediate and good confidence. The respective squared correlation coefficients (r(2)) are 0.73, 0.78, and 0.87, with root-mean square errors (rms) of 0.73, 0.60, and 0.39 log units, respectively. As a general trend, increasing the ACF minimum similarity increases the prediction quality at the cost of decreasing the application range. The method has the potential to assist in the predictive evaluation of fish toxicity for regulatory purposes such as under the REACH legislation.

摘要

通过阅读,可以从具有足够相似性的化合物的相应实验数据中推断出目标化学物质的属性。使用一组 692 种有机化合物,这些化合物具有实验值,以 LC(50)(致死浓度 50%)值表示对黑头呆鱼的 96 小时鱼类毒性,开发了一种基于基于原子中心片段(ACF)的阅读方法来评估化学相似性。通过读取毒性增强相对于预测麻醉水平毒性的各自对数比,log T(e),并添加各自从 log K(ow)(正辛醇/水分配系数)估计的基线麻醉 LC(50),可以预测 log LC(50)。根据对化合物的最低相似性要求,以作为目标化学物质的阅读基础,引入了三种不同的标准设置,允许进行筛选水平的估计以及具有中等和良好置信度的预测。相应的平方相关系数(r(2))分别为 0.73、0.78 和 0.87,均方根误差(rms)分别为 0.73、0.60 和 0.39 个对数单位。一般来说,增加 ACF 最小相似度会提高预测质量,但会降低应用范围。该方法有可能在预测鱼类毒性方面提供帮助,例如在 REACH 法规等监管目的下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验