Liang Li-Jung, Huang David, Brecht Mary-Lynn, Hser Yih-Ing
Department of Medicine Statistics Core, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles.
J Drug Issues. 2010 Dec;40(1):121-140. doi: 10.1177/002204261004000107.
Studies examining differences in mortality among long-term drug users have been limited. In this paper, we introduce a Bayesian framework that jointly models survival data using a Weibull proportional hazard model with frailty, and substance and alcohol data using mixed-effects models, to examine differences in mortality among heroin, cocaine, and methamphetamine users from five long-term follow-up studies. The traditional approach to analyzing combined survival data from numerous studies assumes that the studies are homogeneous, thus the estimates may be biased due to unobserved heterogeneity among studies. Our approach allows us to structurally combine the data from different studies while accounting for correlation among subjects within each study. Markov chain Monte Carlo facilitates the implementation of Bayesian analyses. Despite the complexity of the model, our approach is relatively straightforward to implement using WinBUGS. We demonstrate our joint modeling approach to the combined data and discuss the results from both approaches.
关于长期吸毒者死亡率差异的研究一直很有限。在本文中,我们引入了一个贝叶斯框架,该框架使用具有脆弱性的威布尔比例风险模型对生存数据进行联合建模,并使用混合效应模型对药物和酒精数据进行建模,以研究来自五项长期随访研究的海洛因、可卡因和甲基苯丙胺使用者之间的死亡率差异。分析来自众多研究的综合生存数据的传统方法假定这些研究是同质的,因此由于研究之间未观察到的异质性,估计值可能会有偏差。我们的方法使我们能够在考虑每项研究中受试者之间相关性的同时,对来自不同研究的数据进行结构化合并。马尔可夫链蒙特卡罗方法有助于贝叶斯分析的实施。尽管模型复杂,但我们的方法使用WinBUGS相对容易实现。我们展示了对合并数据的联合建模方法,并讨论了两种方法的结果。