Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland.
Nano Lett. 2010 Dec 8;10(12):4884-9. doi: 10.1021/nl102771p. Epub 2010 Nov 5.
The detection of mechanical vibrations near the quantum limit is a formidable challenge since the displacement becomes vanishingly small when the number of phonon quanta tends toward zero. An interesting setup for on-chip nanomechanical resonators is that of coupling them to electrical microwave cavities for detection and manipulation. Here we show how to achieve a large cavity coupling energy of up to (2π) 1 MHz/nm for metallic beam resonators at tens of megahertz. We used focused ion beam (FIB) cutting to produce uniform slits down to 10 nm, separating patterned resonators from their gate electrodes, in suspended aluminum films. We measured the thermomechanical vibrations down to a temperature of 25 mK, and we obtained a low number of about 20 phonons at the equilibrium bath temperature. The mechanical properties of Al were excellent after FIB cutting, and we recorded a quality factor of Q ∼ 3 × 10(5) for a 67 MHz resonator at a temperature of 25 mK. Between 0.2 and 2 K we find that the dissipation is linearly proportional to the temperature.
在接近量子极限的情况下检测机械振动是一项艰巨的挑战,因为当声子量子数趋于零时,位移变得非常小。对于片上纳米机械谐振器来说,一个有趣的设置是将其与电微波腔耦合,用于检测和控制。在这里,我们展示了如何为金属梁谐振器实现高达(2π)1 MHz/nm 的大腔耦合能量,其工作频率为数十兆赫兹。我们使用聚焦离子束(FIB)切割来产生均匀的狭缝,宽度可达 10nm,将图案化的谐振器与其栅极电极分离,在悬浮的铝膜中。我们测量了低至 25 mK 的热机械振动,并在平衡浴温下获得了大约 20 个声子的低数量。在 FIB 切割后,Al 的力学性能非常出色,我们在 25 mK 的温度下记录了一个 67 MHz 谐振器的 Q 约为 3×10(5)。在 0.2 到 2 K 之间,我们发现损耗与温度呈线性关系。