Suppr超能文献

叶片提取与分析框架图形用户界面:分割和分析叶脉和泡状细胞结构。

Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles.

机构信息

School of Biology , Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Plant Physiol. 2011 Jan;155(1):236-45. doi: 10.1104/pp.110.162834. Epub 2010 Nov 5.

Abstract

Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.

摘要

人们对物理生物网络的结构和功能很感兴趣,这促使许多理论模型得以发展,这些模型可以预测在从哺乳动物到植物等广泛的分类群中最优的网络结构。在许多情况下,由于缺乏合适的经验方法来充分和精确地量化物理网络几何形状,直接测试预测的网络结构是不可能的。长期以来,人们一直使用经验方法来量化植物网络的结构,从根系到茎中的木质部网络,再到叶片内的网络。然而,除了少数例外,目前的方法强调的是对网络部分而不是整个网络进行分析。在这里,我们引入了叶片提取和分析框架图形用户界面 (LEAF GUI),这是一个用户辅助的软件工具,可以帮助人们更好地理解叶片网络结构。LEAF GUI 接收叶片的图像,其中叶脉相对于背景得到增强,然后通过一系列交互式的阈值和清理步骤,返回有关叶片脉络网络和网窝结构的一系列统计信息和信息。度量包括所有网络叶脉的尺寸、位置和连通性,以及它们所包围的网窝的尺寸、形状和位置。LEAF GUI 软件可供免费下载,它有望促进人们对叶片脉网络结构的适应性和生态意义的理解。

相似文献

2
LEAF GUI: analyzing the geometry of veins and areoles using image segmentation algorithms.
Methods Mol Biol. 2012;918:41-9. doi: 10.1007/978-1-61779-995-2_4.
3
phenoVein-A Tool for Leaf Vein Segmentation and Analysis.
Plant Physiol. 2015 Dec;169(4):2359-70. doi: 10.1104/pp.15.00974. Epub 2015 Oct 14.
4
Quantifying leaf venation patterns: two-dimensional maps.
Plant J. 2009 Jan;57(1):195-205. doi: 10.1111/j.1365-313X.2008.03678.x. Epub 2008 Oct 30.
5
Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis.
Plant J. 2012 Feb;69(3):553-63. doi: 10.1111/j.1365-313X.2011.04803.x. Epub 2011 Nov 8.
6
Scaling and structure of dicotyledonous leaf venation networks.
Ecol Lett. 2012 Feb;15(2):87-95. doi: 10.1111/j.1461-0248.2011.01712.x. Epub 2011 Nov 17.
7
Automated and accurate segmentation of leaf venation networks via deep learning.
New Phytol. 2021 Jan;229(1):631-648. doi: 10.1111/nph.16923. Epub 2020 Oct 10.
9
grasviq: an image analysis framework for automatically quantifying vein number and morphology in grass leaves.
Plant J. 2021 Jul;107(2):629-648. doi: 10.1111/tpj.15299. Epub 2021 May 27.
10
Revealing catastrophic failure of leaf networks under stress.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4865-9. doi: 10.1073/pnas.1522569113. Epub 2016 Apr 11.

引用本文的文献

1
Innovative multi-scale approach to study the phenotypic variation of seedling leaves in four weedy Amaranthus species.
Plant Biol (Stuttg). 2025 Mar;27(2):310-322. doi: 10.1111/plb.13752. Epub 2024 Dec 11.
2
Significant correlation between leaf vein length per unit area and stomatal density: evidence from Red Tip and Chinese photinias.
Front Plant Sci. 2024 Mar 20;15:1365449. doi: 10.3389/fpls.2024.1365449. eCollection 2024.
3
How dense can you be? New automatic measures of vein density in angiosperm leaves.
Appl Plant Sci. 2023 Oct 31;11(5):e11551. doi: 10.1002/aps3.11551. eCollection 2023 Sep-Oct.
4
Network feature-based phenotyping of leaf venation robustly reconstructs the latent space.
PLoS Comput Biol. 2023 Jul 20;19(7):e1010581. doi: 10.1371/journal.pcbi.1010581. eCollection 2023 Jul.
9
Identification of Additive-Epistatic QTLs Conferring Seed Traits in Soybean Using Recombinant Inbred Lines.
Front Plant Sci. 2020 Dec 10;11:566056. doi: 10.3389/fpls.2020.566056. eCollection 2020.
10
LeafScope: A Portable High-Resolution Multispectral Imager for In Vivo Imaging Soybean Leaf.
Sensors (Basel). 2020 Apr 13;20(8):2194. doi: 10.3390/s20082194.

本文引用的文献

1
Damage and fluctuations induce loops in optimal transport networks.
Phys Rev Lett. 2010 Jan 29;104(4):048704. doi: 10.1103/PhysRevLett.104.048704.
2
Optimal form of branching supply and collection networks.
Phys Rev Lett. 2010 Jan 29;104(4):048702. doi: 10.1103/PhysRevLett.104.048702. Epub 2010 Jan 27.
3
Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems.
Plant Physiol. 2010 Mar;152(3):1148-57. doi: 10.1104/pp.109.150748. Epub 2010 Jan 27.
4
Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification.
Ecol Lett. 2010 Feb;13(2):175-83. doi: 10.1111/j.1461-0248.2009.01410.x. Epub 2009 Nov 30.
5
High-throughput quantification of root growth using a novel image-analysis tool.
Plant Physiol. 2009 Aug;150(4):1784-95. doi: 10.1104/pp.109.140558. Epub 2009 Jun 10.
6
Auxin transport-dependent, stage-specific dynamics of leaf vein formation.
Plant Signal Behav. 2008 May;3(5):286-9. doi: 10.4161/psb.3.5.5345.
7
Angiosperm leaf vein evolution was physiologically and environmentally transformative.
Proc Biol Sci. 2009 May 22;276(1663):1771-6. doi: 10.1098/rspb.2008.1919. Epub 2009 Feb 25.
8
Quantifying leaf venation patterns: two-dimensional maps.
Plant J. 2009 Jan;57(1):195-205. doi: 10.1111/j.1365-313X.2008.03678.x. Epub 2008 Oct 30.
9
Sanio's laws revisited. Size-dependent changes in the xylem architecture of trees.
Ecol Lett. 2007 Nov;10(11):1084-93. doi: 10.1111/j.1461-0248.2007.01104.x. Epub 2007 Sep 10.
10
A general model for allometric covariation in botanical form and function.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13204-9. doi: 10.1073/pnas.0702242104. Epub 2007 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验