Department of Biology, Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA.
Plant Physiol. 2010 Mar;152(3):1148-57. doi: 10.1104/pp.109.150748. Epub 2010 Jan 27.
The ability to nondestructively image and automatically phenotype complex root systems, like those of rice (Oryza sativa), is fundamental to identifying genes underlying root system architecture (RSA). Although root systems are central to plant fitness, identifying genes responsible for RSA remains an underexplored opportunity for crop improvement. Here we describe a nondestructive imaging and analysis system for automated phenotyping and trait ranking of RSA. Using this system, we image rice roots from 12 genotypes. We automatically estimate RSA traits previously identified as important to plant function. In addition, we expand the suite of features examined for RSA to include traits that more comprehensively describe monocot RSA but that are difficult to measure with traditional methods. Using 16 automatically acquired phenotypic traits for 2,297 images from 118 individuals, we observe (1) wide variation in phenotypes among the genotypes surveyed; and (2) greater intergenotype variance of RSA features than variance within a genotype. RSA trait values are integrated into a computational pipeline that utilizes supervised learning methods to determine which traits best separate two genotypes, and then ranks the traits according to their contribution to each pairwise comparison. This trait-ranking step identifies candidate traits for subsequent quantitative trait loci analysis and demonstrates that depth and average radius are key contributors to differences in rice RSA within our set of genotypes. Our results suggest a strong genetic component underlying rice RSA. This work enables the automatic phenotyping of RSA of individuals within mapping populations, providing an integrative framework for quantitative trait loci analysis of RSA.
非破坏性地对复杂根系(如水稻(Oryza sativa))进行成像并自动表型分析,对于鉴定根系结构(RSA)相关基因至关重要。尽管根系对植物的适应性至关重要,但鉴定负责 RSA 的基因仍然是作物改良中一个尚未充分探索的机会。在这里,我们描述了一种用于自动表型分析和 RSA 性状分级的非破坏性成像和分析系统。使用该系统,我们对来自 12 个基因型的水稻根系进行成像。我们自动估计以前被认为对植物功能很重要的 RSA 性状。此外,我们还扩展了用于 RSA 的特征检查套件,包括更全面描述单子叶植物 RSA 但用传统方法难以测量的特征。使用 118 个个体的 2297 张图像中自动获取的 16 个表型特征,我们观察到:(1)所调查基因型之间的表型存在广泛差异;(2)RSA 特征的基因型间方差大于同一基因型内的方差。RSA 性状值被整合到一个计算管道中,该管道利用监督学习方法来确定哪些性状最能区分两个基因型,然后根据它们对每对比较的贡献对性状进行排序。这一性状分级步骤确定了候选性状,以便随后进行数量性状位点分析,并表明在我们的基因型组中,深度和平均半径是水稻 RSA 差异的关键贡献因素。我们的研究结果表明,水稻 RSA 具有很强的遗传基础。这项工作使我们能够对作图群体中个体的 RSA 进行自动表型分析,为 RSA 的数量性状位点分析提供了一个综合框架。