Suppr超能文献

通过跨多种实验条件同时分析细胞器蛋白质组学数据来提高亚细胞分辨率。

Improved sub-cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions.

机构信息

Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge, UK.

出版信息

Proteomics. 2010 Dec;10(23):4213-9. doi: 10.1002/pmic.201000359.

Abstract

Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.

摘要

根据蛋白质功能进行的空间组织在其分子相互作用的特异性中起着重要作用。新兴的蛋白质组学方法试图通过细胞器的部分分离和部分分离分数中蛋白质丰度分布的计算分析来将蛋白质分配到亚细胞位置。这种方法允许同时分析未经纯化的细胞器,并在可能引发动态重新分布的情况下承诺进行全蛋白质组定位。在设计用于提供部分富集的方案中,解决显示出相似行为的细胞器可能是一个缺点。我们采用细胞器蛋白质定位的同位素标记(LOPIT)细胞器蛋白质组学平台来证明,结合来自相同材料的不同分离的信息可以提高细胞器的分辨率,并将蛋白质分配到亚细胞位置。对两个先前发表的实验进行了严格的分析,它们的不同梯度本身无法完全解析六个已知的蛋白质-细胞器分组,通过现代模式识别算法评估蛋白质-细胞器的关联。在直接组合单梯度数据后,我们通过非线性支持向量机算法和偏最小二乘判别分析观察到蛋白质-细胞器关联的显著改善。结果提出了对现有细胞器蛋白质组学平台进行进一步改进的建议,以及一种通过亚细胞细胞器将蛋白质与蛋白质关联的稳健分析方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验