Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
ACS Nano. 2010 Dec 28;4(12):7349-57. doi: 10.1021/nn101502x. Epub 2010 Nov 8.
We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (∼1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.
我们开发了一种扫描探针显微镜方法来探索离子导电固体中电压控制的离子动力学,并在纳米尺度上解耦传输和局部电化学反应性。电化学应变显微镜允许通过动态(0.1-1 MHz)局部应变检测偏置诱导的离子运动。基于低频(∼1 Hz)电压扫描的光谱模式允许局部探测离子动力学。通过一阶反转曲线(FORC)测量获得的滞后应变响应的偏置依赖性表明,该过程在某个临界电压下被激活,并且在表面上的任何地方都在该电压之上呈线性。这表明 FORC 光谱 ESM 数据分离了局部电化学反应和传输过程。可以为每个位置提取相关参数,如临界电压和有效迁移率,并与微结构相关联。研究了这种行为在薄膜锂离子电池中无定形硅阳极充电过程中的演变。预计这种方法具有广泛的适用性,可以应用于其他离子导电系统。