The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.
ACS Nano. 2013 Sep 24;7(9):8175-82. doi: 10.1021/nn4034772. Epub 2013 Aug 27.
The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after ∼12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
在扫描探针显微镜中,通过在针尖-表面结处施加偏压,可以轻易地诱导表面和体相电化学过程,这些过程可以通过表面形貌、法拉第或传导电流或机电应变响应的变化来进一步检测。然而,控制针尖诱导电化学过程的基本因素,包括施加针尖偏压与局部过程热力学之间的关系,在很大程度上仍未得到探索。我们使用锂离子导电玻璃陶瓷表面上的模型锂离子还原反应,探索了控制锂金属形成的因素,并发现气氛和背电极组成对该过程具有惊人的强烈影响。我们发现反应过程高度依赖于对电极的性质和环境条件。使用不消耗的 Li 对电极,Li 颗粒可以比消耗的对电极更快地生长得更大。显著的 Li 离子耗尽会导致进一步的 Li 还原无法进行。时间研究表明,Li 扩散在大约 12 小时后会补充空位。这些研究表明,在适当的环境控制下,基于 SPM 的定量电化学研究是可行的,将超微电极的概念扩展到了个位数纳米尺度。