Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
PLoS Comput Biol. 2010 Oct 28;6(10):e1000970. doi: 10.1371/journal.pcbi.1000970.
Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factor--gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy (∼80.0%) for predicting growth phenotypes for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli to grow in new environments. We envision that this approach will enable the rapid development and assessment of genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be constructed from genome annotations and cis-regulatory network predictions.
基于约束的综合代谢和调控模型可以准确预测遗传和环境扰动引起的细胞生长表型。构建此类模型的挑战包括转录因子-基因靶相互作用的信息有限,以及基于附加数据集快速精炼模型的计算方法。在这项研究中,我们开发了一种算法 GeneForce,用于识别综合代谢和调控模型中不正确的调控规则和基因-蛋白-反应关联。我们将该算法应用于大肠杆菌和伤寒沙门氏菌的综合模型的修正,并对该算法提出的一些修正进行了实验验证。调整后的大肠杆菌模型在预测 50557 种情况下(在不同环境条件下测试的敲除突变体的生长情况)的生长表型方面具有更高的准确性(约 80.0%)。除了确定所需的模型修正外,该算法还用于识别天然大肠杆菌基因,如果过度表达,将使大肠杆菌能够在新环境中生长。我们设想这种方法将能够快速开发和评估基因组规模的代谢和调控网络模型,以便对特征较少的生物体进行评估,因为这些模型可以从基因组注释和顺式调控网络预测中构建。